Рассмотрим треуг-к АНС, АН=1/2АВ=1/2АС, т.к. в равностороннем треугольнике все стороны равны, а высота является и медианой. По теореме Пифагора получаем АН²+НС²=АС² (1/2АС)²+НС²=АС² НС²=АС²-1/4АС² НС²=3/4АС² НС по условию равно 39√3, значит (39√3)²=3/4АС² 4563=3/4АС² АС²=4563*4/3 АС²=6084 АС=√6084=78 Т.к. треугольник равносторонний значит АС=АВ=ВС=78 ответ: АВ=78
Начертите чертёж и посмотрите внимательно. Рассмотрим одну из вершин трапеции и отрезки сторон, соединяющие эту вершину с точками, в которых окружность касается сторон. Эти отрезки равны между собой как отрезки касательных, проведённых к окружности из одной точки. Такое рассуждение можно провести для всех 4-х вершин. Таким образом, наша трапеция "собрана" из отрезков 4-х видов (длин) , каждый повторяется по 2 раза. Назовём эти длины А, В, С и D. Периметр трапеции - это 2(А+В+С+D)=12. Далее, средняя линия трапеции равна полусумме её оснований. Основания также складываются из наших 4-х отрезков. Сумма оснований будет (А+В+С+D)=12/2=6. Полусумма - (А+В+С+D)/2=6/2=3.
Дано: LG || EH , LG < EH =16 см , EL =HG = LG , ∠LEH = ∠GHE =α=65°.
P(ELGH) - ? P =P(ELGH)=EL +LG +GH +HE =3*EL +16. Обозначаем: EL =LG =GH = x см . P =3x +16. Проведем LK || GH . (K∈отрезку EH ). Δ ELK-равнобедренный ( а если был α = 60° , то равносторонний). Действительно : LGHK параллелограмм ⇒KH =LG и LK =GH , но GH =LE ⇒ LK =LE =x . EK =EH - KH =EH - LG = 16 -x. --- По теорему синусов из Δ ELK : EK /sin∠ELK =LK/sin∠E; (16 -x)/sin(180° -2*65°) = x /sin65°; (16 -x)/sin50° = x /sin65 ⇒x =16sin65°/(sin65°+sin50°) .
P =3x +16 =3*16sin65°/(sin65°+sin50°)+16 = 16(4sin65° +sin50°)/(sin65°+sin50°) .
P.S.Если был α =60° , то P= 16(4sin60° +sin60°)/(sin60°+sin60°) =40 .
(1/2АС)²+НС²=АС²
НС²=АС²-1/4АС²
НС²=3/4АС²
НС по условию равно 39√3, значит (39√3)²=3/4АС²
4563=3/4АС²
АС²=4563*4/3
АС²=6084
АС=√6084=78
Т.к. треугольник равносторонний значит АС=АВ=ВС=78
ответ: АВ=78