Геометрический S(AMB)=1/2MA·MB·sin(AMB)=(√3/4)MA·MB, т.к. ∠AMB=∠ACB=60°. Отсюда MA·MB=4S(AMB)/√3 и аналогично из площадей треугольников AMC и СМВ получим MA·MC=4S(AMC)/√3, MC·MB=4S(СMВ)/√3. По теореме косинусов для тех же треугольников: AB²=MA²+MB²-MA·MB=MA²+MB²-(4/√3)·S(AMB); AС²=MA²+MС²+MA·MС=MA²+MС²-(4/√3)·S(AMС); СB²=MС²+MB²-MС·MB=MС²+MB²-(4/√3)·S(СMB). Сложим эти равенства: AB²+AС²+СB²=2(MA²+MB²+MС²)-(4/√3)·(S(AMB)-S(AMС)+S(СMB)). Но AB=AС=СB=√3, и значит AB²+AС²+СB²=3+3+3=9, S(AMB)+S(СMB)-S(AMС)=S(ABC)=(3√3)/4. Поэтому 9=2(MA²+MB²+MС²)-(4/√3)·(3√3)/4, т.е. MA²+MB²+MС²=(9+3)/2=6.
Тригонометрический Если R - радиус, О - центр окружности и ∠AOM=2x, то MА=2Rsin(x), MB=2Rsin(60°+x), MC=2Rsin(60°-x). Значит MA²+MB²+MС²=4R²(sin²(x)+sin²(60°+x)+sin²(60°-x)). После раскрытия синусов суммы и упрощения получим 6R², что и требовалось.
Модуль, это длина вектора. СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго. РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). Исходя из этого: 1) |AB+BC|=|AC|, то есть |AB+BC|= а. 2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3. |AB+AC|=а*√3. 3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1. |AB+CB|=а*√3. 4) |ВА-ВC|=|CA|=а. 5) |АВ-АC|=|CВ|=а.