М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ladaponomareva
ladaponomareva
14.01.2022 19:55 •  Геометрия

На сторонах правильного шестиугольника как на диаметрах в его внутреннюю часть построены полуокружности. найдите площадь образовавшегося шестиугольника, если длина стороны данного шестиугольника равна a.

👇
Ответ:
GoodArtur
GoodArtur
14.01.2022
Если провести все диагонали в шестиугольнике, то они его разрежут на шесть равных равносторонних треугольников со стороной, равной стороне шестиугольника. Значит площадь треугольника с той же стороной в шесть раз меньше площади шестиугольника. 
Выходит, если сторону шестиугольника увеличим в корень из 6 раз, (площадь при этом увеличится в 6 раз) и построим на ней равносторонний треугольник, задача окажется решённой. 

Так что дело сводится к тому, чтобы построить отрезок длины корень из 6 при заданном отрезке длины 1. Это можно сделать с теоремы Пифагора - построить два отрезка длины 2 и корень из 2 (последний - диагональ единичного квадрата). На этих отрезках строим прямоугольный треугольник. Его гипотенуза - нужный нам отрезок. 
Дальше дело техники - циркулем на стороне отрезка радиусом, равным длине отрезка строим две полуокружности, одну - с центром в начале отрезка, другую - с центром в конце. Точку их пересечения соединяем с концами отрезка - получится искомый треугольник.
4,5(13 оценок)
Открыть все ответы
Ответ:
Pyli03032004
Pyli03032004
14.01.2022

Объяснение:

Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.

а) найдите площадь полной поверхности этой призмы;

б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;

в) вычислите площадь этого сечения;

г) найдите угол между плоскостью сечения и плоскостью нижнего основания;

д) постройте линию пересечения секущей плоскости верхнего основания.

рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.

И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:

площадь основания

Теперь найдем площади боковых граней, а затем и площадь полной поверхности

нашли полную поверхность

4,6(95 оценок)
Ответ:
moskalenkovlad1
moskalenkovlad1
14.01.2022

Дано: шар с центром в точке
                 R=13- радиус шара
                 плоскость а -сечение шара
                  р(а, О)=5 (расстояние от центра шара О до плоскости а
                  Найти: r-радиус круга в сечении
                         Решение 
Сечением будет круг. Найдем его радиус. От центра шара до центра сечения 5 - это катет треугольника, который получится, если соединим центр шара, центр сечения и точку пересечения шара с его сечением. 13 - гипотенуза, по теорПифагора:r=√13²-5²=√144=12. S=πr²=π144=144πкв.ед

4,5(71 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ