Основанием пирамиды abcdk является равнобедренная трапеция с основаниями ad и bc и острым углом 45 градусов, ab=4корень из 2 см. боковые грани наклонены к плоскости основания под углом 30 градусов. найдите объем пирамиды. !
Если все боковые грани пирамиды одинаково наклонены к плоскости основания, а высота проходит внутри пирамиды, то высота проходит через центр вписанного в основание пирамиды круга. Радиус вписанного в трапецию круга равен половине высоты этой трапеции - основания пирамиды. Высота ВМ трапеции равна боковой стороне, умноженной на синус 45º. h=BM=4√2•√2/2=4 (см) ⇒ ОН=ВМ:2=2 (см) Т.к. высота пирамиды перпендикулярна ее основанию, ∆ КОН - прямоугольный. КО=ОН•tg30º=2:√3 V=S•h:3 В равнобедренную трапецию вписан круг, ⇒ суммы оснований равны сумме боковых сторон, а полусумма оснований равна одной боковой стороне. (свойство) Площадь трапеции S=h•(AD+BC):2=4•4√2=16√2 см² V=¹/₃(16√2)•2:√3=¹/₃•(32√2):√3=32√6:9 см³
3) найдем СВ....используем теорему синусов...к/sin 90=СВ/sina....отсюда: (синус 90 градусов равен 1)...СВ=к*sina...далее, по следствию из т. Пифагора найдем АС: ... теперь находим АД, используя подобие треугольников.... .... значит, АД=
4) в параллелограмме высоты будут равные....найдем одну из них, используя метод площадей...т.е. S=a*h....S=a*b*sina...(a и b - стороны....синус альфа - синус углы между этими сторонами....h - высота)...прировняв два метода нахождения площади, получим, что h=2 корень из 2
1) сторону АС найдем через определение тангенса угла альфа...т.е. tga=CB/AC...AC=CB/tga=5/tga
2) используем основное тождество, чтобы найти косинус (через него найдем тангенс)...
3) найдем СВ....используем теорему синусов...к/sin 90=СВ/sina....отсюда: (синус 90 градусов равен 1)...СВ=к*sina...далее, по следствию из т. Пифагора найдем АС: ... теперь находим АД, используя подобие треугольников.... .... значит, АД=
4) в параллелограмме высоты будут равные....найдем одну из них, используя метод площадей...т.е. S=a*h....S=a*b*sina...(a и b - стороны....синус альфа - синус углы между этими сторонами....h - высота)...прировняв два метода нахождения площади, получим, что h=2 корень из 2
1) сторону АС найдем через определение тангенса угла альфа...т.е. tga=CB/AC...AC=CB/tga=5/tga
2) используем основное тождество, чтобы найти косинус (через него найдем тангенс)...
Радиус вписанного в трапецию круга равен половине высоты этой трапеции - основания пирамиды.
Высота ВМ трапеции равна боковой стороне, умноженной на синус 45º.
h=BM=4√2•√2/2=4 (см)
⇒ ОН=ВМ:2=2 (см)
Т.к. высота пирамиды перпендикулярна ее основанию, ∆ КОН - прямоугольный. КО=ОН•tg30º=2:√3
V=S•h:3
В равнобедренную трапецию вписан круг, ⇒ суммы оснований равны сумме боковых сторон, а полусумма оснований равна одной боковой стороне. (свойство)
Площадь трапеции S=h•(AD+BC):2=4•4√2=16√2 см²
V=¹/₃(16√2)•2:√3=¹/₃•(32√2):√3=32√6:9 см³