Пусть одна сторона- х(см), тогда другая (х+14) Периметр параллелограмма равен 2(а+b), где а и b- стороны. Значит, полупериметр- (a+b). Составим уравнение. х+х+14=46 2х=32 х=16, т.е. одна сторона 16 см Тогда другая 16+14=30 (см). ответ: 30 см.
Решение Пусть данный треугольник будет АВС. Угол В=105º, угол С=45º Найдем третий угол треугольника: угол А=180-*105+45)=30º Угол А - наименьший, и против него лежит наименьшая сторона ВС ∆ АВС. Проведем высоту ВН и получим равнобедренный прямоугольный треугольник ВНС. ВН=НС По т. Пифагора ВН=7 Или ВН=ВС*sin 45º=7 Катет ВН прямоугольного ∆ ВАН противолежит углу 30º и равен половине гипотенузы ВА АВ Найдем угол А - равен 30º Этому углу противолежит сторона ВС =7√2 Тогда по т.синусов АВ:sin 45º=BC:sin 30º (АВ√2):2=(7√2):0,5⇒ АВ=7*2=14 см
Строишь радиусы в точки, где кончается хорда. Получаешь р/б треугольник с углом при вершине 120 °. Строишь в нем высоту к основанию. Получаешь два равных прямоугольных треугольника с углами 30°, 60°, 90°. Высота делит хорду пополам, поэтому против угла 60° лежит сторона 6 корней из 3. Гипотенуза тр-ков, которая равна радиусу, равна (6 корней из 3)/cos 30 ° = 12. Отсюда, по определению меры угла, длина дуги = 12* (120/180)*ПИ = 8 ПИ. Площадь сектора = ПИ * (радиус в квадрате)*(радианная мера дуги/2ПИ) => ПИ*144*((2ПИ/3)/ПИ)= ПИ*144*(1/3) = 48 ПИ.
Периметр параллелограмма равен 2(а+b), где а и b- стороны. Значит, полупериметр- (a+b).
Составим уравнение.
х+х+14=46
2х=32
х=16, т.е. одна сторона 16 см
Тогда другая 16+14=30 (см).
ответ: 30 см.