Обе точки лежат на высоте треугольника, которая является одновременно и медианой и биссектрисой. Медиана делит высоту в соотношении 2:1, а биссектриса на части пропорциональные сторонам треугольника. Найдем высоту.
1)х+х+х+5=35 3х=30 х=10 ответ:Боковые стороны =10;Основание=15 2)х+х+4х+4х=360 10х=360 х=36 ответ:два угла=36;другие два=144 3)х+2х+2х=40 5х=40 х=8 ответ:боковые стороны=16;основание=8 4)доказательство: 1.Рассмотрим треуг BMD и теуг BKD: 1)BD-общая 2)BM=BK(т.к. М и К -середины боковых сторон,а теуг АВС -равнобедренный) 3)угол MBD=углуDBK(т.к. BD в равнобедренном треуг является медианой,высотой и биссектрисой) Следовательно,треуг BMD=треуг BKD(по первому признаку равенства треугольников) 5)Доказательство: рассмотрим два треугольника: 1)одна сторона будет общая 2)углы при основании равны 3)углы(вверху этого треугольника)будут равны(т.к. Высота будет являтся и биссектрисой) следовательно,треугольники,которые образовала высота,будет равны! 6)не знаю(точнее не уверенна) 7)а)х+4х+4х-90. 9х=270 х=30 ответ:А=30;В=120;С=30 б)эти стороны равны(т.к. Мы узнали,что треугольник равнобедренный)
Обе точки лежат на высоте треугольника, которая является одновременно и медианой и биссектрисой. Медиана делит высоту в соотношении 2:1, а биссектриса на части пропорциональные сторонам треугольника. Найдем высоту.
ВD = √AB²-AD² = √11²- 7² = 6√2
Медиана отсекает участок 6√2:3=2√2 от основания.
Биссектриса отсекает участок (7/18)*BD = (7/3)√2
Искомое расстояние (7/3)√2 - 2√2 = [(7-6)/3]√2 = (√2)/3 ≈ 0,47