Пусть внутри равностороннего треугольника ABC взяли точку O. Площадь треугольника ABC равна сумме площадей треугольников AOB, BOC, AOC. Площадь треугольника AOB можно записать как 1/2*a*h1, где a - сторона AB исходного равностороннего треугольника, h1 - высота треугольника AOB, проведённая из вершины O. Она и будет расстоянием от O до стороны AB. Аналогично, площади треугольников BOC и AOC можно записать соответственно как 1/2*a*h2, 1/2*a*h3, где h2, h3 - расстояния от O до двух других сторон треугольника. Сложив эти три площади, получим, что 1/2*a*(h1+h2+h3)=1/2*a*h, где h - высота исходного равностороннего треугольника. Значит, h1+h2+h3=h, то есть сумма расстояний от любой точки внутри треугольника до его сторон постоянна и равна высоте этого треугольника, в нашем случае 6 см.
Давайте без точки О. 1. Строим АК. То есть надо разделить угол А ПОПОЛАМ. Из точки А циркулем делаем засечки D и E (одним радиусом) . Затем ставим острие циркуля в точки D и E и описываем равными радиусами дуги, пересекающиеся в точке F. Прямая, соединяющая А и F делит угол А пополам. Продолжаем эту прямую до пересечения со стороной ВС и получаем точку К. 2) Строим ВМ. То есть надо разделить сторону АС пополам. Одним раствором циркуля (большим половины АС) делаем засечки с двух сторон от АС. Соединяем точки засечек. Пересечение этой прямой с АС и дает точку М - середину АС. 3)Строим СН. То есть надо опустить из точки С перпендикуляр на АВ. Из точек А и Б проводим окружности, проходящие через точку С. Соединяем точки пересечения этих окружностей. Точка пересечения этой прямой с о стороной АВ и есть точка Н.
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.