Первый .
Для решения применим теорему косинусов для треугольника.
ВС2 = АВ2 + АС2 – 2 * АВ * ВС * CosA.
ВС2 = 9 + 36 – 2 * 3 * 6 * (1 / 2).
ВС2 = 45 – 18 = 27.
ВС = √27 = 3 * √3 см.
Второй .
Проведем высоту ВН.
В прямоугольном треугольнике АВН катет АН лежит против угла 300, тогда АН = АВ / 2 = 3 / 2 = 1,5 см. СН = АС – АН = 6 – 1,5 = 4,5 см.
Тогда ВН2 = АВ2 – АН2 = 9 – 2,25 = 6,75.
В прямоугольном треугольнике ВСН, ВС2 = ВН2 + СН2 = 6,75 + 20,25 = 27.
ВС = √27 = 3 * √3 см.
ответ: Длина стороны ВС равна ВС 3 * √3 см.
Объяснение:
Две параллельные прямые пересекаются третьей прямой, поэтому выполняются следующие положения: углы 2 и 4 равны как вертикальные, сумма 4 и вертикального угла углу 1 равна 180° как внутренние односторонние, значит сумма углов 1 и 2 равна 180°, угол 1 составляет 5 частей, угол 2 - 4 части, всего 9 частей, тогда 1 часть 180°: 9 = 20°. угол 1 5·20° = 100°, угол 2 - 4·20° = 80°. угол 4 равен 80°(как вертикальный углу 2). угол 3 и угол 4 – смежные, их сумма равна 180°. угол 3 равен 180° - угол 4 = 180° -80° = 100°.
Объяснение:
ответ:
Так как углы получились смежные, то их сумма равна 180 градусам. Если бы больший угол был равен меньшему, то эта сумма была бы 180 - 35 = 145 градусов, а каждый из них был бы равен
145/2 =72,5 градуса. тогда на самом деле больший угол был бы равен
72, 5 + 35 = 107,5градуса.