Основание треугольника равно 60 см,а высота и медиана,проведённые к основанию,соответственно 12 и 13 см.определить длину большей боковой стороны треугольника.
Для удобства обозначим треугольник АВС, где АС-основание, а АВ-искомая сторона. Из вершины В проводим высоту и называем ее ВD, а также медиану и называем ее ВЕ. В получившемся прямоугольном (т.к. BD-высота) треугольник ЕВD нам известна гипотенуза ВЕ=13см и противолежащий катет ВD=12см. Находи угол ВЕD: sinBED=12/13=0,923076, arcsinBED=67,38 градусов. Находим отрезок ED через cosBED=х/13. х=cosBED*13=cos(67,38)*13=5 см. Рассмотрим прямоугольный треугольник АВD. Сторона АD=АЕ+ЕD. Т.к. медиана ВЕ делит основание АС=60 см пополам, то отрезок АЕ=60/2=30 см. АD=30+5=35 см. Согласно теореме Пифагора в прямоугольном треугольнике АВD квадрат гипотенузы АВ равен сумме квадратов катетов ВD и АD, т.е. АВ=ВD+AD АВ= АВ= АВ===37 см.
Дан квадрат АВС1Д1. О1О2 - ось цилиндра. АВ⊥О1О2. Диагонали квадрата пересекаются наоси цилиндра в точке О. Через точку О проведём отрезок РЕ║АД1. ∠О2ОЕ=α. Сторона квадрата равна а. АЕ=ЕВ=а/2. Построим плоскость перпендикулярно оси О1О2, проходящую через сторону АВ. Проекция квадрата АВС1Д1 на эту плоскость будет прямоугольник АВСД. Диагонали прямоугольника АВСД пересекаются на оси цилиндра в точке М. Половина диагонали этого прямоугольника и есть радиус цилиндра. АМ=R. В тр-ке ЕОМ ЕМ=ОЕ·sinα=a·sinα/2 (ОЕ=РЕ/2=а/2). В тр-ке АМЕ АМ²=АЕ²+ЕМ²=(а²/4)+(а²sin²α/4)=2a²sin²α/4. AM=a√2·sinα/2 ответ: радиус цилиндра
В получившемся прямоугольном (т.к. BD-высота) треугольник ЕВD нам известна гипотенуза ВЕ=13см и противолежащий катет ВD=12см. Находи угол ВЕD: sinBED=12/13=0,923076, arcsinBED=67,38 градусов. Находим отрезок ED через cosBED=х/13. х=cosBED*13=cos(67,38)*13=5 см.
Рассмотрим прямоугольный треугольник АВD. Сторона АD=АЕ+ЕD. Т.к. медиана ВЕ делит основание АС=60 см пополам, то отрезок АЕ=60/2=30 см.
АD=30+5=35 см. Согласно теореме Пифагора в прямоугольном треугольнике АВD квадрат гипотенузы АВ равен сумме квадратов катетов ВD и АD, т.е.
АВ
АВ=
АВ=
АВ=