ответ: 298. 32 см, 72см, 56см.
292. 23 дм.
Объяснение:
"298. Периметр треугольника равен 80 см. Стороны треугольника, образованного средними линиями данного треугольника, относятся как 4:9:7. Найдите стороны данного треугольника."
***
Пусть одна сторона треугольника, образованного средними линиями трапеции равна 4х. Тогда вторая будет 9х, а третья - 7х. Периметр этого треугольника равен 80 см.
Р=4х+9х+7х=80;
20х=80;
х=4;
4x=4*4=16 см;
9х=9*4=36 см;
7х=7*4=28 см;
Проверим:
Р=16+36+28= 80 см. Всё верно!
Средние линии треугольника равны половине основания. Значит основания равны удвоенным средним линиям.
Одна сторона равна 2*16=32 см;
Вторая сторона равна 2*36=72 см;
Третья сторона равна 2*28=56 см.
***
"292.Стороны треугольника равны 12 дм, 16 дм и 18 дм. Найдите периметр треугольника, сторонами которого являются средние линии этого треугольника."
***
АВС - треугольник. MNP - треугольник, образованный средними линиями треугольника. Каждая из них равна половине стороны ей параллельной.
MN=BC/2=16/2=8 дм.
NP=AC/2=18/2=9 дм.
MP=AB/2 =12/2=6 дм.
Р MNP=8+9+6= 23 дм.
Объяснение:
1) АВ-средняя линия АВ=7 , значит NP=14 см.
СВ-средняя линия АВ=9 , значит NК=18 см
АС-средняя линия АВ=12 , значит КP=24 см.
Р=14+18+24=56( см)
2)MN- средняя линия трапеции по определению средней линии. Значит она MN║ВС║АD.
В ΔАВС , М-середина и MN║ВC, значит MN-средняя линия ΔАВС и ВС=2MN, ВС=25 см
В ΔАСD ,К-середина и КN║DА, значит КN-средняя линия ΔАСD и АD=2КN, АD=28 см
Сумма 28+25=53 ( см)
4)Пусть одна часть=х см, тогда меньшее основание 3х см, большее основание 5х см. По свойству средней линии
16=(3х+5х):2,
32=8х, х=4. Большее основание будет 5*4=20 (см)
ОСТАЛЬНЫЕ ЧАСТИ НЕ ВИДНО.
, где a, b, c - длины сторон треугольника,
p - полупериметр равный
1) p = (2 + 3 + 4) / 2 = 9/2 = 4 = 4,5
(см²)
2) p = (2,5 + 1 + 2) / 2 = 5,5 / 2 = 5 · = 11/2 · 1/2 = 11/4 = 2 = 2,75
(см²)
3) p = (5 + 7 + 9) / 2 = 21/2 = 10,5
(м²)
4) p = (5 + 5+ 6) / 2 = 8
= 3 * 4 = 12 (дм²)