Обозначим параллелограмм буквами ABCD. Пусть диагональ BD образует углы:
угол DBA=30 градусов, угол DB=90 градусов
Обозначим сторону AB=a, сторону BC=b. Так как у параллелограмма противолежащие стороны равны, то AB=CD=a, BC=AD=b
По условию задачи периметр параллелограмма равен:
P=AB+BC+CD+AD=a+b+a+b=2(a+b)=36
a+b=18
Рассмотрим треугольник ABD. Он прямоугольный, угол BDA=90 градусов
Выразим сторону AD:
AD=AB*sinABD=a*sin30=a/2
Значит, b=a/2
Подставим b вместо a:
a+b=36
a+a/2=18
3a/2=18
a=12
b=6
ответ: стороны параллелограмма равны 6см и 12см.
Значит DM=AH=8
Угол СDM равен углу HBK как углы с соответственно перпендикулярными сторонами.
Тогда получается, что треугольник СDM равнобедренный. Следовательно
BH=CM=DM=8
Площадь равна произведению основания на высоту
S=AD*BH=(8+4)*8=96
ответь: 96 см²