Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
а) AM= 6, BM=9
б) r=4,5
Объяснение:
Для того чтобы не запутаться: n-BC, d-AC, m-AB.
Это на каких сторонах находятся точки.
1. Найдем третью сторону треугольника:
P=a+b+c
bc=48-(15+15)=18
2. Поскольку треугольник равнобедренный, точка касания, делит сторону BС на два равных отрезка:
BN=NC=9
3. По свойству касательных к окружности:
BN=NC=9
AM=AB-BM
(BM будет равно BN)
AM=15-9=6
4. Радиум можно будет найти по формуле площади:
r=
(p-полупериметр)
S=
Ну или же:
(AD-высота, ее можно найти по теореме Пифагора: AD=; AD=
)
S=12*9=108
p=48:2=24
r=108:24=4,5
Радиус окружности, описанной около треугольника равен R=a*корень(3)\3.
Радиус окружности, вписанной в треугольник равен r=a*корень(3)\6, где а – сторона правильного треугольника
R=2*r
R=2*2 =4 см
Сторона правильного треугольника равна a=R*корень(3)
а=4*корень(3) см
Периметр правильного треугольника равен Р=3*а
Р=3*4*корень(3)=12*корень(3) см
ответ: 4 см, 12*корень(3) см