Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
Сумма углов треугольника равна 180 градусам. Угол А в два раза меньше угла В, т.е. градусную меру угла В составляет некое число, умноженное на два, а градусную меру угла А просто это число. Отсюда можно найти градусную меру этой части, за счёт чего в дальнейшем найти градусные меры угла. Градусная мера угла С меньше заданной нами части градусной меры углов на 20 градусов, чтобы найти эту часть нужно эту разницу в 20 градусов прибавить к 180, тогда мы получаем следующее уравнение: x+2x+x=200, 4x=200, x=50 градусов. Теперь просто подставляем найденную нами величину в заданные условием величины наших углов. Угол А=50 градусов, угол В=2*50=100 градусов, а угол С=50-20=30. Проверим найденные значения на верность, их сумма должна быть равна 180 градусам: 100+500+30=180, так и есть, следовательно, найденные градусные меры углов верны. ответ: угол А=50 градусов, угол В=100 градусов, угол С=30 градусов.