Угол ABD равен 48 градусов, следовательно угол AВС тоже равен 48 грдусов. Значит на два остальных угла приходится 264 градуса. Значит, угол С равен 132 градуса.
Предположим ромб АВСД. Раз это ромб значит все его стороны равны 13 дм. Пускай диагональ ВД=24 дм. Проведем еще диагональ АС (ее и будем искать). Диагонали ромба в точке пересечения делятся пополам и под прямым углом. Назовем точку пересечения диагоналей О. Итак ВО=ОД=12дм. Рассмотрим треугольник ВОС. Угол О =90 градусов, следовательно по теореме Пифагора находим катет ОС=корень квадратный из (ВС^2-ОВ^2)=корень квадратный из (169-144)=корень квадратный из 25 =5(дм). Поскольку АС тоже диагональ ромба, то АО=ОС=5 дм. АС=АО+ОС=5+5=10 (дм). ответ 10 дм
Решим через знания планиметрии и через формулу объема пирамиды 1) в основании квадрат; посчитаем его площадь: (сторона квадрата) = (диагональ)*(1/(корень из 2)) Площадь квадрата тогда: 8 см 2) планиметрия; найдем высоту пирамиды; Известно что боковое ребро равно 4 см; Построим треугольник из высоты проведенной к центру основания квадрата, бокового ребра и половины диагонали квадрата; получился прямоугольный (п/у) треугольник; высота находится либо через Т Пифагора, либо через свойство 30 градусного угла, либо через тригонометрию; итого высота равна 2*(корень из 2); 3) наконец формула: V=(1/3)*(высота пирамиды)*(площадь основания (квадрата)); V = 16*(корень из 2)/3
Значит на два остальных угла приходится 264 градуса. Значит, угол С равен 132 градуса.