нижнее основание ad = 33верхнее bc = 15точка пересечения диагоналей ообозначим угол oad = x, с учётом свойст биссектрисы и накрест лежащих углов этому же иксу равны и оав, и овс, и всо.треугольник авс равнобедренный ав = всопускаем высоту вк на adbk^2 = ab^2 - ak^2 = 15^2 - ((33-15/2)^2 = 12^2s = 12 * (15+33)/2 = 2882) сумма длин радиусов вписанной и описанной окружности r + r = 7 sqrt(3)/2обозначим сторону буквой амедиана (высота, биссектриса) равна a sqrt(3)/2две трети медианы - радиус описанной окружностиодна треть - радиус вписанной (эти два утверждения справедливы только для правильного треугльника)сумма радиусов нам данаa sqrt(3)/2 = 7 sqrt(3)/2a = 7периметр 21s = 7 * 7 sqrt(3)/4 = 21 sqrt(3)/4
Около правильного многоугольника можно описать единственную окружность.
Доказательство:
А₁А₂А₃... - правильный многоугольник.
Пусть биссектрисы углов А₁ и А₂ пересекаются в точке О.
Так как углы А₁ и А₂ многоугольника равны, то равны и углы 1 и 2.
Тогда ΔА₁ОА₂ - равнобедренный, т.е. точка О равноудалена от вершин А₁ и А₂.
∠3 = ∠2, так как ОА₂ биссектриса, центральные углы правильного многоугольника равны (∠А₁ОА₂ = ∠А₂ОА₃), сторона ОА₂ общая для треугольников А₁ОА₂ и А₂ОА₃, значит треугольники равны по стороне и двум прилежащим к ней углам.
Тогда ОА₃ = ОА₁.
Аналогично можно доказать, что равны и остальные треугольники. Таким образом, точка О равноудалена от всех вершин, значит она - центр описанной окружности.
Эта окружность будет описана и около треугольника, например, А₁А₂А₃, а вокруг треугольника можно описать единственную окружность, значит данная окружность - единственная, которую можно описать около правильного многоугольника.
2. Пускай первый катет=x, тогда второй= x-10, а гипотенуза х+10. По теореме Пифагора получается два корня 0 и 40. 0 не подходит, тогда выходит, что первый катет = 40, второй 30, а гипотенуза 50. Периметр = 120см. Площадь прямоугольного треугольника = половине произведения катетов, то есть 60см квадратных.
3. Если треугольник равнобедренный, то по формуле площади S=1/2ah, где а -боковая сторона, h - высота, получается, что 48=1/2•а•8, отсюда а=12.