Катеты равнобедренного прямоугольного треугольника наклонены к плоскости альфа, проходящей через гипотенузу ,под углом пи\6. найти угол между плоскостью треугольника и плоскостью альфа
Тр-к АВС-прямоугольный(уголС=90) Из точки С проводим перпундикуляр на плоскость (СК), точку к соединяем с А и В, тогда Ак, Ск-проекции катетов данного тр-ка! ПустьАС=ВС=а СК=1/2 *АС; (катет, лежащий против угла в 30град) СК=1/2 *а=а/2 В тр-ке АВС проводим СМ перпенд-но АВ(через середину АВ!), уголСМК-это угол между плоскостью (АВС) и альфа Из СКМ(угол СКМ=90град): СК/СМ=sinx Из тр-каАСМ: СМ=АМ(уг.А=угВ=45град; уг.АСМ=90-45=45 sin45=CM/AC; CM=(a coren2)/2 sinx=(a/2):(acoren2)/2 =1/coren2; x=45 ; 45град
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.