пирамида КАВСД, К-вершина, АВСД-квадрат, АВ=ВС=СД=АС, КО-высота пирамиды=3, О-центр основания -пересечение диагоналей, КД=КС=КВ=КА=5, треугольник КОД прямоугольный, ОД=корень(КД в квадрате-КО в квадрате)=корень(25-9)=4, ВД=2*ОД=2*4=8, АВ=корень(ВД в квадрате/2)=корень(64/2)=4*корень2
Пусть АВС - треугольник, АД - медиана, проведенная из вершины А на сторону ВС, СЕ - медиана, проведенная из вершины С на сторону АВ. Медианы АД и СЕ пересекаются в точке М. Точка пересечения медиан делит каждую из медиан на две части в отношении 2:1, считая от вершины. Так как медианы равны, то равны и части медиан АМ=СМ и ЕМ=ДМ. Следовательно треугольники АЕМ и ДМС равны по двум сторонам и углу между ними (угол ЕМД=угол ДМС, как вертикальные углы) Значит стороны, лежащие против равных углов равны, то есть АЕ=ДС. Но АЕ - это половина стороны АВ, ДС - это половина стороны ВС, Значит АВ=ВС, треугольник АВС - равнобедренный.
Обозначим угол А за х. По условию задания ∠A + ∠C = 270°. Угол Д равен 180 - х по свойству трапеции. Сумма углов четырёхугольника равна 360°. Поэтому угол В = 360 - 270 - (180 - х) = х - 90°. Этому значению равен и угол ДАС как часть угла А минус 90°. Из подобия треугольников АДС и ВСА составим пропорцию: ДС/АС = АС/АВ. Обозначим ДС = 1к, а АВ = 9к. Тогда АС² = 1к*9к = 9к² или 6² = 9к². Извлечём корень из обеих частей равенства: 6 = 3к, откуда получаем к = 6/3 = 2. Основания равны: СД = 1к = 1*2 = 2, АВ = 9к = 9*2 = 18. Определим координаты вершин заданного четырёхугольника: G(0;3), E(-1;6), F(8;3), H(9;0). Разделим его на 2 треугольника. По разности координат видно, что треугольники равны. Площадь треугольника GEF S=(1/2)*|(Хe-Хg)*(Уf-Уg)-(Хf-Хg)*(Уe-Уg)| = 12. S(GEFH) = 2*12 = 24 кв.ед.
пирамида КАВСД, К-вершина, АВСД-квадрат, АВ=ВС=СД=АС, КО-высота пирамиды=3, О-центр основания -пересечение диагоналей, КД=КС=КВ=КА=5, треугольник КОД прямоугольный, ОД=корень(КД в квадрате-КО в квадрате)=корень(25-9)=4, ВД=2*ОД=2*4=8, АВ=корень(ВД в квадрате/2)=корень(64/2)=4*корень2
объем=1/3*площадьАВСД*КО=1/3*4*корень2*4*корень2*3=32