М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
katenabulasheva
katenabulasheva
25.11.2022 09:21 •  Геометрия

Втреугольнике abc угол с равен 90, ab =25, bc =20. найдите косинус внешнего угла при вершине а

👇
Ответ:
Dinara136
Dinara136
25.11.2022
Катет АС=√25²-20²=√625-400=√225=15
сosA=AC/AB=15|25=3|5
Косинус внешнего угла по формулам приведения
cos(180-A)=-cosA=-3|5
4,8(62 оценок)
Открыть все ответы
Ответ:
avicena1111
avicena1111
25.11.2022
Треугольник АМР равен тр. РКС, значит угол МАР равен углу КРС, а угол МРА равен углу КСР. По условию задачи тр. АВС равнобедренный, значит угол МАР равен углу КСР и следовательно, уг. МРА = уг. МАР = уг. КРС = уг. КСР (все эти углы равны). Значит треугольник МАР и тр. КРС так же являются равнобедренными, то есть АМ=МР=КР=КС. Следовательно Треугольник МКР так же является равнобедренным (МП=КР). Линия ВР в треугольнике АВС является биссектриссой, медианой и высотой одновременно. Через сумму углов треугольника: уг. МАР+ уг. МРА+ уг. АМР = уг. КРС + уг. КСР+ уг. РКС = уг. АРМ + уг МРК + уг. КРС = 180 градусов.
С учетом равенства  уг. МРА = уг. МАР = уг. КРС = уг. КСР получим: уг. АМР = уг. МРК = уг. РКС. Следовательно треуг. МКР = тр. АМР = тр. РКС, а линия МК параллельна линии АВ, так как смежные углы уг. МАР и уг. КМА=АМР+уг. КМР в сумме составляют 180 градусов.
Значит Отрезок ВР перпендикулярен отрезку МК (так же, как и отрезку АС).
Значит отрезок РВ является высотой треугольника МРК, а следовательно он является его медианой и биссектриссой, так как треугольник МРК равнобедренный.
4,6(45 оценок)
Ответ:
Совушка09
Совушка09
25.11.2022

78. ΔADB = ΔCDB по двум сторонам (AD = CD, а также общая сторона BD) и углу между ними (∠ADB = ∠CDB), то есть по первому признаку равенства треугольников.

79. ΔADB = ΔCDB по двум сторонам (AD = BC, а также общая сторона BD) и углу между ними (∠ADB = ∠CBD), то есть по первому признаку равенства треугольников.

82. ΔACM = ΔKBM по двум сторонам (BM = MC, AM = MK) и углу между ними (∠BMK = ∠AMC, так как эти углы вертикальные), то есть по первому признаку равенства треугольников. Рисунок к задаче на фото.

86.  ΔADB = ΔCDB по стороне (общая сторона BD) и двум прилежащим углам (∠ABD = ∠CBD, ∠ADB = ∠CDB), то есть по второму признаку равенства треугольников.

87.  ΔADB = ΔCDB по стороне (общая сторона BD) и двум прилежащим углам (∠ABD = ∠CDB, ∠ADB = ∠CBD), то есть по второму признаку равенства треугольников.


Виконати завдання на фото № 78, 79, 82, 86, 87
4,5(42 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ