1. 4) такого тр-ка не существует, потому-что 5+9<15, а с таким отношением тр-ник построить нельзя. 2. Пусть боковые стороны будут a=х и b=х-3. Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние: х²-10²=(х-3)²-5², х²-100=х²-6х+9-25, х=14, а=14 см, b=14-3=11 см, c=5+10=15 cм. Р=14+11+15=40 см. ответ: б) 40 см. 3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3. АВ=4√3/√3=4 см. Периметр ромба: Р=4АВ=16 см. ответ: а) 16 см.
Пусть в параллелограмме ABCD угол A равен 60 градусам, а высота BH делит сторону AD пополам (см. рисунок). Рассмотрим прямоугольный треугольник ABH. В нём острый угол HAB равен 60 градусам, тогда другой острый угол - ABH - равен 90-60=30 градусам. Известно, что в прямогольном треугольнике катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Значит, AB=2AH. Кроме того, AD=2AH, значит, AB=AD. По свойству параллелограмма, AB=CD; AD=BC, это значит, что все стороны нашего параллелограмма равны между собой, тогда каждая из них равна 1/4 периметра. В частности, AB=AD=24/4=6. Теперь рассмотрим треугольник ABD. В него входит меньшая диагональ параллелограмма - BD. Нам известно, что этот треугольник равнобедренный, так как AB=AD. Так как угол при вершине равен 60 градусам, 2 других угла треугольника также равны 60 градусам. Значит, треугольник равносторонний и AB=AD=BD. Отсюда BD=6.
Длина дуги окружности: L = α•r = π/4 • 1 = π/4 см.