6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
1. Гипотенуза прямоугольного треугольника равна 9 см, катет равен 4,5 см. Определите градусные меры углов треугольника.
90 градусов , 30 гр, 60 гр
2.Гипотенуза прямоугольного треугольника равна 16 см, острый угол равен 30 градусов. Определите, чему равен катет, лежащий напротив этого угла.
16/2=8см
3.Определите градусную меру острых углов прямоугольного треугольника, если его катеты равны 4,45 см.
45 гр и 45 гр
4.Сколько высот можно провести из вершины прямого угла?
3
5.Один из углов прямоугольного треугольника на 54 градусов больше другого. Найти величины всех углов треугольника.
18,72,90
6.В треугольнике АВС угол С равен 90 градусов, угол В равен 60 градусов, АВ = 43 см. Чему равна сторона ВС?
21,5 см
7. В прямоугольном треугольнике ABC с прямым углом C проведена высота CD. Найдите величину угла A, если DB = 6, а BC =12.
30 градусов
3.S=14×6÷2=42