Высота правильной четырехугольной пирамиды равна 8, а сторона основания - 12. найти площадь сечения пирамиды плоскостью, проходящей через центр основания и параллельной боковой грани пирамиды.
КАВСД пирамида, К-вершина, АВСД-квадрат, АВ=ВС=СД=АС=12, О-центр основания-пересечение диагоналей, КО-высота пирамиды=8, проводим МН через О параллельно СД, МН=СД=12, проводим МЛ параллельно КД (Л на АК), проводим НЕ пераллельно КС (Е на КВ), МЛ -средняя линия треугольника АКД (т.к АМ=МД а МЛ параллельна КД, то АЛ=КЛ), НЕ-средняя линия треугольника КСЕ, проводим ЛЕ-средняя линия треугольника АКВ=1/2АВ, ЛЕ=АВ/2=6,
площадь сечения равнобедренная трапеция МЛЕН, из точки О проводим перпендикуляр ОТ на АВ, ОТ=1/2АД=12/2=6, проводим апофему КТ, треугольник КОТ прямоугольный, КТ=корень(КО в квадрате+ОТ в квадрате)=корень(64+36)=10, Ф-точка пересечения ЛЕ и КТ, средняя линия ЛЕ делит КТ на 2 равные части, ФТ=КФ=1/2КТ=10/2=5, в треугольнике КОТ ОФ-медиана, в прямоугольном треугольнике медиана проведенная к гипотенузе=1/2гипотенузы, ОФ=1/2КТ=10/2=5=высота трапецииМЛЕН (если провести высоты в трапеции из точек Л и Е на МН, то отрезок ОФ соединяющий середины оснований параллелен высотам),
можно по другому высоту трапеции найти- Треугольник АКТ прямоугольный, КТ=10, АТ=6, КА=КД=корень(КТ в квадрате+АТ в квадрате)=корень(100+36)=2*корень34, МЛ=1/2КД=2*корень34/2=корень34, в трапеции проводим высоты ЛР и ЕХ на МН, РЛЕХ прямоугольник ЛЕ=РХ=6, треугольник МЛР=треугольник НЕХ как прямоугольные по гипотенузе и острому углу, МР=НХ=(МН-РХ)/2=(12-6)/2=3, треугольник МЛР прямоугольный, ЛР=ЕХ=ОФ=корень(МЛ в квадрате-МР в квадрате)=корень(34-9)=5 -высота трапеции
1) У равнобедренного треугольника есть ось симметрии. 3) Площадь трапеции равна произведению средней линии на высоту. 2) Любой квадрат можно вписать в окружность. 3) Сумма квадратов диагоналей прямоугольника равна сумме квадратов всех его сторон.
1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.
2) Если при пересечении двух прямых третьей прямой сумма внутренних односторонних углов равна 180°,то эти прямые параллельны. 1) Вокруг любого треугольника можно описать окружность. 3) Если в ромбе один из углов равен 90°, то такой ромб -.квадрат. 1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Существует параллелограмм, который не является прямоугольником. 3) Сумма углов тупоугольного треугольника равна 180°.
Пусть M- cередина АС, N - середина АВ. Продолжим ВМ на расстояние ВМ, получим Q, продолжим CN на расстояние CN, получим Р. Рассмотрим четырехугольник APBC, в нем диагонали РС и АВ точкой пересечения N делятся пополам, значит, это параллелограмм (признак такой), значит АР параллельна ВС (определение параллелограмма). Рассмотрим четырехугольник ABCQ, в нем диагонали AС и ВQ точкой пересечения M делятся пополам, значит, это параллелограмм (признак такой), значит АQ параллельна ВС (определение параллелограмма). Итак, в точке А проведены две прямые АР и АQ, параллельные ВС. По 5 постулату Евклида (аксиома параллельности) через точку вне прямой можно провести единственную прямую, параллельную данной, значит, точки А, Р, Q лежат на одной прямой
КАВСД пирамида, К-вершина, АВСД-квадрат, АВ=ВС=СД=АС=12, О-центр основания-пересечение диагоналей, КО-высота пирамиды=8, проводим МН через О параллельно СД, МН=СД=12, проводим МЛ параллельно КД (Л на АК), проводим НЕ пераллельно КС (Е на КВ), МЛ -средняя линия треугольника АКД (т.к АМ=МД а МЛ параллельна КД, то АЛ=КЛ), НЕ-средняя линия треугольника КСЕ, проводим ЛЕ-средняя линия треугольника АКВ=1/2АВ, ЛЕ=АВ/2=6,
площадь сечения равнобедренная трапеция МЛЕН, из точки О проводим перпендикуляр ОТ на АВ, ОТ=1/2АД=12/2=6, проводим апофему КТ, треугольник КОТ прямоугольный, КТ=корень(КО в квадрате+ОТ в квадрате)=корень(64+36)=10, Ф-точка пересечения ЛЕ и КТ, средняя линия ЛЕ делит КТ на 2 равные части, ФТ=КФ=1/2КТ=10/2=5, в треугольнике КОТ ОФ-медиана, в прямоугольном треугольнике медиана проведенная к гипотенузе=1/2гипотенузы, ОФ=1/2КТ=10/2=5=высота трапецииМЛЕН (если провести высоты в трапеции из точек Л и Е на МН, то отрезок ОФ соединяющий середины оснований параллелен высотам),
можно по другому высоту трапеции найти- Треугольник АКТ прямоугольный, КТ=10, АТ=6, КА=КД=корень(КТ в квадрате+АТ в квадрате)=корень(100+36)=2*корень34, МЛ=1/2КД=2*корень34/2=корень34, в трапеции проводим высоты ЛР и ЕХ на МН, РЛЕХ прямоугольник ЛЕ=РХ=6, треугольник МЛР=треугольник НЕХ как прямоугольные по гипотенузе и острому углу, МР=НХ=(МН-РХ)/2=(12-6)/2=3, треугольник МЛР прямоугольный, ЛР=ЕХ=ОФ=корень(МЛ в квадрате-МР в квадрате)=корень(34-9)=5 -высота трапеции
площадь сечения=1/2(ЛЕ+МН)*ОФ=1/2*(6+12)*5=45