Объяснение:
У ромба 2 пары равных внутренних углов, сумма которых равна 360°.
Пусть тупой угол равен 2х, тогда острый будет х. Получаем: 2*2х+2х=360
6х=360
х=60.
Значит острый угол ромба равен 60°, а тупой 120°.
Площадь ромба равна половине произведения его диагоналей.
Найдем диагонали.
Известно, что диагонали ромба делят внутренние углы пополами и пересекаются под прямым углом. Исходя из этого, приняв, что диагонали ромба пересекаются в точке О и ∠АВС - тупой, рассмотрим ΔВСО.
Он прямоугольный с ∠ОСВ= 30° и ∠ОВС=60° при гипотенузе ВС. Значит его катет ВО = ВС·sin30° = 3√3,
катет СО=ВС·sin60° = 6√3 · √3 ÷2 = 9
Мы определили длины половин диагоналей ромба.
Тогда площадь ромба АВСD равна
3√3 × 9 × 2 = 54√3 =
Если отрезки пересекающихся медиан равны, то и медианы равны.
Если медианы треугольника равны, значит, треугольник равносторонний.
Применив теорему о том, что медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, найдем длину медиан:
ОА₁=√8, тогда АО=2√8, а АА₁=3√8.
АА₁=ВВ₁=СС₁=3√8=6√2.
В равностороннем треугольнике медиана является биссектрисой и высотой.
Найдем сторону АС через медиану ВВ₁ по формуле
ВВ₁=(АС√3)\2
6√2=(АС√3)\2
АС√3=12√2
АС=(12√2)\√3=4√6
Найдем площадь АВС
S=1\2 * AC * ВВ₁ = 1\2 * 4√6 * 6√2 = 2√6 * 6√2 = 12√12=24√3 (ед²)
Подробнее - на -
Объяснение:
Квадрат гипотенузы равен сумме квадратов катетов
Примем катет за а
a2 + a2 = (корень из 2)2
a2 + a2 =2
2a2 = 2
a2 = 1
a = 1