Так как окружность является описанной около треугольника , то его гипотенуза является диаметром . . Пусть одна часть равна х, тогда гипотенуза равна 5х, катет 3х, получим уравнение (5 х) в квадрате = 16 в квадрате + ( 3х)в квадрате - по теореме Пифагора.
Получаем 25 х в квадрате = 256 + 9х в квадрате.
16 х в квадрате = 256
х в квадрате = 16
х= 4 ; х= -4
-4 не удовлетворяет условию задачи.
Найдём гипотенузу 5х= 5*4 = 20, гипотенуза это диаметр, значит радиус 20:2 =10
ответ : 10 см
1)Задачи на построение пониманию учащимися происхождения различных геометрических фигур, возможности их преобразования - всё это является важной предпосылкой развития пространственного мышления школьников. Эти задачи развивают логическое мышление, геометрическую интуицию.
2)Целесообразно отметить следующие особенности условий задач на построение: в одних задачах данные фигуры могут быть без изменения сущности задачи заменены их мерами. Таковы, например, задачи построить треугольник по стороне, медиане другой стороны и радиусу описанной окружности; построить параллелограмм по его углу и диагоналям.
3)Любые, кроме круга.
4) 1.При циркуля можно измерить любой данный отрезок и отложить такой же от точки на прямой в любую сторону.
2.При циркуля можно провести окружность с центром в любой данной точке и радиусом, равным любому данному отрезку.
5)Не разрешается. Объяснение: Так как про построении используется нелинованное линейка( для соединения точек) и циркуль ( для переноса длины отрезка)
6).(B).(A).(C)
На прямой даны точки В и А. Выставляем раствор циркуля равным отрезку АВ и с центром в точке А проводим дугу до пересечения с прямой на продолжении луча ВА. Точка пересечения С и даст второй конец отрезка ВС в два раза большего, чем АВ.
7)От точки до края круга 2см, а до другого края 10см значит 10-2=диаметр круга=8, а радиус это половина диаметра 8/2=4
8)не знаю
9)Допустим: а=3см, b=1,5см (на фото ответ)
10)дано:
а=12 см
b=5 см
а) a+b=17 см
б) a-b=7 см
в) 2а=24 см
г) a+2b=22 см
д) 2a+b=29 см
Внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
1) Внешний угол треугольника 100°:
∠С + ∠В = 100°
∠C = 100° - ∠B = 100° - 48° = 52°
∠BCA = 52°
2) Внешний угол ∠ABD = ∠С + ∠A = 90° + 46° = 136°
Внешний угол при вершине другого острого угла 136°
3)В равнобедренном треугольнике углы при основании равны.
Внешний угол 140°: ∠A + ∠C = 140°
2∠A = 140° ⇒ ∠A = 140°/2 = 70°
Угол при основании равен 70°
4) Пусть Х = ∠CBK - внешний угол при вершине В,
тогда Х + 64° - внешний угол при вершине А
∠CВA = 180°- Х - смежные углы
∠CAD - по правилу внешнего угла:
∠CAD = ∠C + ∠CBA
X + 64° = 80° + (180° - X)
2X = 196° ⇒ X = 196°/2 = 98°
∠B = ∠CBA = 180°- X = 180° - 98° = 82°
∠B = 82°