Найдите площадь равнобокой трапеции, меньшее основание которой равно 2 см, тупой угол при нем равен 120, если известно, что в трапецию можно вписать окружность
Обозначим трапецию как АВСД, где ВС-меньшее основание, а АД-большее основание. Проведем в ней две высоты ВК и СН.
По условию ВС=2, а угол В=120*. В четырехугольнике сумма углов прилежащих к одной стороне равна 180*, значит угол А=60* и угол Д=60*(т.к. трапеция равнобедренная по условию). Треугольники АВК и СНД равны по гипотенузе и катету (АВ=СД по условию, ВК=СН-как высоты). Угол АВК=30*, значит АК=1/2АВ(по свойству угла в 30*). КВСН-прямоугольник, значит ВС=КН=2. Пусть АВ=х, тогда СД-тоже равно х, АК=НД=х/2.
(Далее: напомню в 8 классе было свойство которое говорило, что: если в четырехугольник можно вписать окружность, то сумма противоположных сторон четырехугольника равны), значит имеем:
х+х=2+2+х/2+х/2,
2х=4+х,
х=4.
Значит: АД=6
Площадь трпеции вычисляется по формуле: 1/2(ВС+АД)ВК.
Найдем ВК по теореме Пифагора: ВК=(АВ в квадр.-АК в квадр.) и все под корнем, получим, что ВК=2 корень из 3.
Значит площадь равна: 1/2(2+6)*2 корень из 3=8 корень из 3.
Обозначим вершины трапеции АВСД. Из вершины С тупого угла трапеции опустим высоту СН на АД. АВСН - прямоугольник ( т.к. трапеция прямоугольная). ВС=АН, АВ=СН. Площадь трапеции равна произведению её высоты на полусумму оснований. S АВСД=СН*(АД+ВС):2 Пусть коэффициент отношения боковых сторон равен х. Тогда АВ=4х, СД=5х. СН=АВ=4х. Из прямоугольного треугольника СНД НД²=СД²-СН² 18=√(25х²-16х²)=3х х=НД:3=18:3=6 см АВ=4х=4*6=24 см АН=√(АС²-СН²)=10 см ВС=АН=10 см АД=10+18=28 см S АВСД=СН*(АД+ВС):2 S АВСД=24*(28+10):2=456 см²
Обозначим трапецию как АВСД, где ВС-меньшее основание, а АД-большее основание. Проведем в ней две высоты ВК и СН.
По условию ВС=2, а угол В=120*. В четырехугольнике сумма углов прилежащих к одной стороне равна 180*, значит угол А=60* и угол Д=60*(т.к. трапеция равнобедренная по условию). Треугольники АВК и СНД равны по гипотенузе и катету (АВ=СД по условию, ВК=СН-как высоты). Угол АВК=30*, значит АК=1/2АВ(по свойству угла в 30*). КВСН-прямоугольник, значит ВС=КН=2. Пусть АВ=х, тогда СД-тоже равно х, АК=НД=х/2.
(Далее: напомню в 8 классе было свойство которое говорило, что: если в четырехугольник можно вписать окружность, то сумма противоположных сторон четырехугольника равны), значит имеем:
х+х=2+2+х/2+х/2,
2х=4+х,
х=4.
Значит: АД=6
Площадь трпеции вычисляется по формуле: 1/2(ВС+АД)ВК.
Найдем ВК по теореме Пифагора: ВК=(АВ в квадр.-АК в квадр.) и все под корнем, получим, что ВК=2 корень из 3.
Значит площадь равна: 1/2(2+6)*2 корень из 3=8 корень из 3.