ответ: доказать это невозможно. Объясняю: рисуем угол, проводим его биссектрису, берем на ней точку P. Проводим окружность с центром в точке P так, чтобы она каждую сторону угла пересекала в двух точках. Пусть на одной стороне это точки M_1 и M_2 (M_1 ближе к вершине угла, M_2 дальше), на второй -K_1 и K_2 (K_1 ближе к вершине угла, K_2 дальше). Если из точек M_1, M_2 выбрать, скажем M_1, а из точек K_1, K_2 выбрать K_2, то DM_1≠DK_2, хотя все условия задачи выполнены.
Эта ситуация является хорошей иллюстрацией, почему есть признак равенства треугольников по двум сторонам и углу между ними, но нет признака по двум сторонам и углу не между ними (то есть такой признак можно было бы придумать, но пришлось бы давать дополнительную информацию, скажем по поводу того, являются ли наши треугольники остроугольными или тупоугольными)
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.