М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ваняшка
ваняшка
14.09.2022 01:55 •  Геометрия

Теорема о средней линии треугольника.

👇
Ответ:
MINdana
MINdana
14.09.2022
Средняя линия треугольника параллельна третьей стороне и равна ее половине.

Дано: ΔАВС, КМ - средняя линия.
Доказать: КМ ║ АС, КМ = АС/2

Доказательство:

1. Через точку К (середину стороны АВ) проведем прямую, параллельную стороне АС.
По теореме Фалеса эта прямая разделит сторону ВС пополам, значит пройдет через точку М.
Средняя линия КМ лежит на прямой, параллельной АС, значит
КМ ║ АС.
2. Через точку М проведем прямую, параллельную стороне АВ.
По теореме Фалеса она разделит сторону АС пополам. Н - середина АС.
АКМН - параллелограмм, так как КМ ║ АН и МН ║ АК по построению, значит КМ = АН = АС/2
4,5(88 оценок)
Открыть все ответы
Ответ:
DanielB2008
DanielB2008
14.09.2022
Угол BAE равен EAD (AE - биссектриса BAD)
BD параллельна AD (прямоугольник является параллелограммом по условию)
угол BEA равен EAD (смежные углы при пересечении параллельных прямых общей секущей прямой AE)
Следовательно углы BAE и BEA равны и треугольник BAE - равнобедренный, т.е.
|AB| = |EB|

Периметр параллелограмма равен
P = |AB| + |BC| + |CD| + |DA| = 2 * (|AB| + |BC|) =
= 2 * (|BE| + |BC|) = 2 * (|BE| + |BE| + |EC|) =
= 4 * |BE| + 2 * |EC|

По условию, биссектриса делит сторону на отрезки 12 и 7 см.
Если |BE| = 7 см, то периметр P = 4*7 + 2*12 = 52
Если |BE| = 12 см, то периметр P = 4*12 + 2*4 = 56

Биссектриса одного из углов параллелограмма делит его сторону на отрезки, длины которых равны 12 и 7
4,4(22 оценок)
Ответ:
Ksiloffie
Ksiloffie
14.09.2022
Пусть ABCD – данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности A острый. 
Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB. Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE • AD. Отрезок AE – высота параллелограмма, соответствующая стороне AD, и, следовательно, S = a • h. Теорема доказана.
4,7(4 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ