Объяснение:
1. Если внутренние накрест лежащие углы равны, то прямые параллельны.
∠70°=∠70° ⇒
a║b
2. Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.
∠110+∠70=180°⇒
c║d
3. Если соответственные углы равны, то прямые параллельны.
∠a=∠a
MD║|NK
4. Если соответственные углы равны, то прямые параллельны.
∠90=∠90
m║n
5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
BC║AD
AB║CD
6. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠EFL=∠FLK ⇒ EF║LK
∠EKF=∠KEL⇒ FK║EL
7. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠NPM=∠PMQ ⇒NP║MQ
∠NMP=∠MPQ⇒NM║PQ
8. ΔAOB=ΔCOD (по двум сторонам и углу между ними)⇒
∠BAO=∠ODC если внутренние накрест лежащие углы равны, то прямые параллельны
AB║CD
9. ΔOXY=ΔOYZ по трем сторонам ⇒
∠XYO=∠YOZ ⇒ XY║OZ
∠XOY=∠OYZ⇒ OX║YZ
10.
UR║ST (внутренние накрест лежащие углы равны)
ΔRUO=ΔOST (по стороне и двум прилежащим к ней углам) ⇒
∠TRU=∠STR ⇒ RS║UT
2114 кв.см
Объяснение:
Пирамида в Лувре представляет собой правильную четырёхугольную пирамиду (прототип пирамиды Хеопса)
Правильная четырехугольная пирамида — это многогранник, у которого одна грань — основание пирамиды — квадрат, а остальные — боковые грани — равные треугольники с общей вершиной. Высота опускается в центр пересечения диагоналей квадрата основания из вершины.В основании пирамиды находится квадрат площадью 1225 кв.м. Значит сторона квадрата равна:
Высота пирамиды- SO=21,6
Для нахождения полной площади поверхности пирамиды нужно сложить площадь боковой поверхности и площадь основания.Sполн. = Sбок. + Sосн.
Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему:Sбок=p×l
р=Р/2=4а/2=2а=2×35=70 см
Апофему SF найдём из прямоугольного треугольника SFO(<O=90°) по теореме Пифагора.
SO=21,6 - по условию. ОF= 1/2×AB=1/2×35=17,5 см
Sбок=70×12,7=889 кв.см
Sполн= 889+1225=2114 кв.см