Из трапеции АВСD имеем: углы ВОС и АОD равны как вертикальные, углы ОАD и ОСВ, а также углы ODA и ОВС равны как внутренние разносторонние. Следовательно, треугольники BOC и AOD подобны по трем углам. Из теоремы подобных треугольников: отношение площадей подобных треугольников равно квадрату коэффициенту их подобия, то есть S(AOD)/S(BOC) = k^2. Имеем: k^2 = 27/3, k^2 = 9, k = 3. Стороны подобных треугольников пропорциональны: AO/OC = k, имеем: 6/OC = 3, OC = 6/3, OC = 2. АС = АО + ОС, АС = 6 + 2 = 8. ответ: 8.
Поскольку радиус равен окружности равен 3, то диаметр равен 6. Исходя из описанных в картинке действий, имеем: AC = 24, АО = 12, поскольку диагонали в точке пересечения делятся пополам, а также диагонали ромба пересекаются под прямым углом. Опустим высоту ромба КР. Теперь из прямоугольного треугольника AOP: AP^2 = AO^2 - OP^2, AP^2 = 144 - 9 - 135, АР = корень из 135 = 3 корня из 15. Поскольку ОР - высота, опущенная из прямого угла треугольника, то из подобия треугольников имеем следующее соотношение: OP^2 = AP*PD, PD = OP^2/PD = 9/3 корня из 15, PD = корень из 15 поделить на 5. AD = AP + PD = 3 корня из 15 + корень из 15 поделить на 5, AD = 16 корней из 15 поделить на 5. Площадь робма равна стороне, умноженной на опущенную к ней высоту: S = AD*KP, S = 96 корней из 15 разделить на 5.
Вычитая из нижнего уравнения верхнее, получаем
x-28=0
x=28
Нужен центральный угол POM, поэтому
y=2x
y=56
ответ: 56.