М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ibondarenk2013
ibondarenk2013
09.03.2022 17:01 •  Геометрия

Втреугольнике авс дано: угол с=90 градусов, угол а=15 градусов, сh-высота, см-медиана. найдите градусную меру угла hcm

👇
Ответ:
kostyafadeev9
kostyafadeev9
09.03.2022
1. Рассмотрим треуг-к АМС
т.к.медиана, проведенная к гипотенузе, равна радиусу описанной около прямоугольного треугольника окружности, то МС=МА,значит треуг-к АМС-равнобедренный, отсюда
угол МАС=угол МСА=15 градусов
2.Рассмотрим треугольник СНВ.
угол АВС=90-уголВАС=90-15=75 градусов
уголНСВ=90-угол НВС=90-75=15 градусов.
3.угол МСН=угол АСВ-уголАСМ-уголНСВ=90-15-15=60 градусов
ответ:60 градусов
4,6(66 оценок)
Открыть все ответы
Ответ:
3. Пусть АВС - прямоугольный треугольник, данный по условию, АВ и АС = 12 см - катеты, ВС - гипотенуза.
Проведем из вершины А к гипотенузе вершину АН. Отрезок ВН - это проекция катета АВ на гипотенузу, а отрезок НС = 8 см - проекция катета АС на гипотенузу.
Рассмотрим треугольник АНС: АС = 12 см - гипотенуза (так как лежит против угла АНС, который равен 90 градусов, так как АН - высота, то есть перпендикуляр, опущенный к ВС), НС = 8 см - катет.
Каждый катет треугольника - среднее геометрическое гипотенузы и проекции катета на гипотенузу, то есть:
AC^2 = ВС * НС;
12^2 = ВС * 8;
8ВС = 144;
ВС = 18 см.
В треугольнике АВС известны гипотенуза ВС = 18 см, катет АС = 12 см. Найдем второй катет АВ по теореме Пифагора:
AB = √(BC^2 - AC^2);
AB = √(18^2 - 12^2) = √(324 - 144) = √180 = 6√5 (см).
Площадь треугольника АВС равна половине произведения его катетов:
S = (AB*AC) / 2;
S = (6√5*12) / 2 = 36√5 (см квадратных).
ответ: S = 36√5 см квадратных.
4,6(6 оценок)
Ответ:
muratbaevdanil
muratbaevdanil
09.03.2022

Объяснение:

Дано:

∆ ABC,

CK — медиана и биссектриса

Доказать:

∆ ABC — равнобедренный.

Проведем анализ задачи:

На основе каких данных можно утверждать, что треугольник — равнобедренный? Если у него две стороны равны либо два угла равны. Значит, нам нужно доказать либо равенство сторон AC и BC, либо равенство углов A и B. Любое из этих равенств следует из равенства треугольников.

В треугольниках AKC и BKC биссектриса CK образует равные углы ACK и BCK, медиана CK — равные отрезки AK и BK. Сторона CK — общая.

Что мы имеем? Две стороны, но нет угла между ними. Ни к одной из сторон нет двух прилежащих углов. Признаки равенства треугольников применить не можем.

В таком случае придется выполнять дополнительные построения.

На луче CK отложим отрезок KE так, чтобы KE=CK, и точки A и E соединим отрезком. Получили еще один треугольник AKE.

Мы можем доказать, что этот треугольник равен треугольнику BKC (по двум сторонам и углу между ними).

Из равенства этих треугольников следует равенство сторон AE и BC и углов AEK и BCK.

Получается, что в треугольнике ACE имеется два равных угла AEK и ACK. Поэтому он — равнобедренный, откуда легко доказывается и равенство сторон AC и ВС. Осталось записать доказательство.

Доказательство:

На луче CK отложим отрезок KE, KE=CK.

Рассмотрим треугольники AKE и BKC:

1) AK=BK (так как CK — медиана по условию)

2) KE=CK (по построению)

3) ∠AKE=∠BKC (как вертикальные).

Следовательно, ∆ AKE=∆ BKC (по двум сторонам и углу между ними).

Из равенства треугольников следует равенство соответствующих сторон: AE=BC и соответствующих углов: ∠AEK=∠BCK.

По условию, ∠BCK=∠AСK. Поэтому ∠AEK=∠AСK.

Таким образом получили, что в треугольнике ACE два угла равны. Значит, ∆ ACE — равнобедренный с основанием CE (по признаку). Следовательно, его боковые с�ороны равны: AE=AC.

А поскольку уже доказали, что AE=BC, то и AС=BС. Поэтому ∆ ABC — равнобедренный с основанием AB (по определению).

Неограниченные возможности для обучения без рекламы со Знаниями Плюс

Подробнее - на -

4,8(44 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ