Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Пирамида правильная, значит ее вершина проецируется в центр основания - точку О - центр описанной и вписанной окружностей.
SO=√13 (высота пирамиды - дана).
АВ=ВС=АС =6 (стороны основания - правильного треугольника - дано).
АН=(√3/2)*АВ (формула высоты правильного треугольника).
АН - высота, биссектриса и медиана =>
ОН=(1/3)*АН (свойство медианы).
Тогда
АН=(√3/2)*6=3√3.
ОН=(1/3)*3√3=√3.
SH=√(SO²-OH²)=√(13-3)=√10.
Sб=(1/2)*Р*SH =(1/2)*18*√10 (произведение полупериметра основания на высоту боковой грани (апофему).
Sб=9√10.