Предположим, что это параллелограмм АВСД, ВН=12 - высота к стороне АД, ВН1=20 - высота к стороне СД. Угол НВН1=60. В прямоугольном треугольнике Н1ВС угол Н1ВС=угол НВС-угол НВН1=90-60=30. В прямоугольном треугольнике (Н1ВС) против угла в 30 градусов лежит катет (СН1) равный половине гипотенузы (ВС). Примем катет СН1 за х, тогда, ВС=2х по теореме Пифагора ВС в квадрате= ВН1 в квадрате+СН1 в квадрате. Подставляем цифры и х: 2х в квадрате=20 в квадрате+х в квадрате,3х в квадрате=400, х=20 корней из 1/3, тогда ВС=2*20 корней из 1/3=40 корней из 1/3. Площадь = АД*ВН (АД=ВС - так как АВСД параллелограмм) Площадь=40 корней из 1/3*12=480 корней из 1/3
Дано: окружность, т.О - центр, ABCDEF - впис. прав. 6-угольник, АВ= 7 см, MNK - впис. прав. треугольник.
Найти: Рmnk.
Решение.
1) Радиус описанной окружности всегда равен стороне правильного шестиугольника, поэтому сразу делаем вывод, что радиус данной окружности равен стороне данного правильного шестиугольника. R=AB= 7 см.
2) Радиус описанной окружности правильного треугольника, выраженный через его сторону, равен:
R= √3/3 • а, где R - радиус, а "а" - сторона прав. треугольника.
Находим сторону треугольника ΔMNK.
7= √3/3 • MN;
MN= 7: √3/3;
MN= 7• 3/√3;
MN= 21/√3= 21√3/3= 7√3 (см)
3) Периметр треугольника MNK
Pmnk= 3MN= 3•7√3= 21√3 (см)
ответ: 21√3 см.
рассмотрим треугольник АБД угол А равен 90 , значит угол Д равен 30
против угла равного 30 градус лежит катет равный половине гипотинузы , значит БД равно 24. тк диагонали прямоугольника равны , то АЦ равно БД и равно 24