Дано:
окружность;
хорда = 6 √ 2;
хорда стягивает дугу в 90 градусов;
Найти: длину дуги и длину окружности;
Если хорда стягивает дугу в 90 градусов, отсюда следует, что она является стороной квадрата вписанного в окружность.
Из формулы хорда = R √ 2 найдем R/
Подставим известные значения, и получим:
6 √ 2 = R √ 2;
R = 6 * √2 / √2;
Числитель и знаменатель в дроби сокращаем на корень из 6, тогда получим:
R = 6;
Теперь найдем длину дуги и длину окружности:
Длина окружности равна C= 2 * 3 , 14 * 6 = 37 , 68;
Длина дуги равна L = 37 , 68 / 4 = 9 , 42.
Объяснение:
Дано:
окружность;
хорда = 6 √ 2;
хорда стягивает дугу в 90 градусов;
Найти: длину дуги и длину окружности;
Если хорда стягивает дугу в 90 градусов, отсюда следует, что она является стороной квадрата вписанного в окружность.
Из формулы хорда = R √ 2 найдем R/
Подставим известные значения, и получим:
6 √ 2 = R √ 2;
R = 6 * √2 / √2;
Числитель и знаменатель в дроби сокращаем на корень из 6, тогда получим:
R = 6;
Теперь найдем длину дуги и длину окружности:
Длина окружности равна C= 2 * 3 , 14 * 6 = 37 , 68;
Длина дуги равна L = 37 , 68 / 4 = 9 , 42.
Объяснение:
Дан треугольник АВС, АВ=ВС=15 см, АС=18см, R-радиус описанной окружности, r- радиус вписанной окружности. BK - высота, S- площадь треугольника АВС, Р-периметр треугольника АВС. Решение: S=(AC*BC*AB)/4R. S=1/2*P*r. S=1/2BK*AC. Рассм треуг-к ВКС - прямоугольный, по т. Пифагора ВС^2=BK^2+KC^2. КC=1/2AC, BK^2=BC^2-KC^2=225-81=144, BK=12 см. S=1/2BK*AC=1/2*12*18=108 см.R=(AC*BC*AB)/(4*S)=(15*15*18)/(4*108)=75/8 см.
r=2*S/Р=2*S/(АС+ВС+АВ)=2*108/(15+15+18)=9/2 см.