Впараллелограмме abcd ab = 16 см, be и bk - соответственно высоты, проведённые к сторонам ad и cd. ∠ebk = 60°. определите длину высоты be. a)24 б)8√3 в)12 г)√3
<KBC=90-<EBK=90-60=30° В прямоугольном треугольнике ВКС сумма острых углов КВС и С равна 90°, значит <C= 90-<KBC=90-30=60° Поскольку противоположные углы параллелограмма равны между собой, то <A=<C=60°. В подобных по двум углам прямоугольных треугольниках ВКС и АЕВ углы КВС и АВЕ равны. <ABE=30°.Катет АЕ прямоугольного треугольника АЕВ, лежащий против угла в 30°, равен половине гипотенузы, значит АЕ = АВ : 2 = 16 : 2 = 8 см По теореме Пифагора в прямоугольном АЕВ находим ВЕ: BE=√AB²-AE²=√256-64=√192=√64*3=8√3 см
Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Смотрите, всё довольно просто :) Объясню по моему чертежу. Мы рисуем отрезок АВ. Находим середину отрезка( для простоты и удобства, советую взять отрезок 4 см. Соответственно, 2 см и будет середина). У меня середина отрезка помечена зелёным цветом. Затем, ставим, где-нибудь рядом, точку М ( она красного цвета). Берём линейку, соединяем линейкой точку М и середину отрезка. Слабо проводим линию, чтобы она была немного дальше от середины. Отмеряем расстояние от точки М до середины отрезка. И отмечаем новую точку на этом расстоянии, от середины отрезка. Допустим F. Она и будет симметрична точке М
В прямоугольном треугольнике ВКС сумма острых углов КВС и С равна 90°, значит
<C= 90-<KBC=90-30=60°
Поскольку противоположные углы параллелограмма равны между собой, то
<A=<C=60°.
В подобных по двум углам прямоугольных треугольниках ВКС и АЕВ углы КВС и АВЕ равны. <ABE=30°.Катет АЕ прямоугольного треугольника АЕВ, лежащий против угла в 30°, равен половине гипотенузы, значит
АЕ = АВ : 2 = 16 : 2 = 8 см
По теореме Пифагора в прямоугольном АЕВ находим ВЕ:
BE=√AB²-AE²=√256-64=√192=√64*3=8√3 см