Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
1. Рассмотрим осевое сечение конуса - треугольник АВС, он правильный. У правильного треугольника высота опущенная из точки В на сторону АС будет его медианой и биссектрисой. А если так то угол АВД=углу ДВС. Угол АВД = 30 градусов. 2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС. cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС. 3. Площадь треугольника равна половине площади прямоугольника. S=(АС*ВД)/2
Рассмотрим треугольник АВС. Угол А=20 гр, угол С=60 гр (по условию), следовательно, угол В = 180 - (60+20)= 180 - 80 = 100 гр. (т.к. сумма углов треугольника = 180 гр)
Т.к. ВД - биссектриса, то угол СВД = углу ДВА = 100 / 2= 50 гр.
Рассмотрим треугольник СВН. Угол СНВ = 90 гр (т.к ВН - высота), угол С = 60 гр ( по условию). Т.к. сумма углов треугольника = 180 гр, то угол СВН = 180 - (90+60)= 180 - 150 = 30 (град).
Итак, угол СВН = 30 гр, а угол СВД = 50 гр, следовательно, угол НВД = 50 - 30 = 20 (град)
Если нужно с чертежом, пиши.