Две прямые, параллельные третьей, параллельны. Это свойство называется транзитивностью параллельности прямых. Доказательство Пусть прямые a и b одновременно параллельны прямой c. Допустим, что a не параллельна b, тогда прямая a пересекается с прямой b в некоторой точке A, не лежащей на прямой c по условию. Следовательно, мы имеем две прямые a и b, проходящие через точку A, не лежащую на данной прямой c, и одновременно параллельные ей. Это противоречит аксиоме 3.1. Теорема доказана.
аксиома 3.1Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну.
Ну смотри, угол А относится к углу B, как 2:1. Потому что угол А мы взяли два раза, тоесть две части, два угла B, а угол B, поkучается, как одна часть, один раз он взят. Теперь решаем: Знаем, что сумма углов, прилежащих к одной стороне равна 180 градусов. Посчитаем кол-во частей: 2+1=3, все части между собой равны, так как это по сути три уголка B/ Теперь 180 градусов поделим на кол-во частей: 180:3=60 град. - это одна часть. Смотрим, угол А состоит из двух частей, значит 60*2=120 град. угол В - 60 град. В параллелограмме противоположные углы равны
Ось ординат - это ОУ? тогда решу. Эта точка будет именть координату 0 по х. Ее координаты (0; у) Расстояние от этой точки до (-3;8) = корень из (9+(8-у)в квадрате) Расстояние от этой точки до (6;5) = корень из (36 + (5-у)в квадрате) Т.к. наша точка равноудалена от них, эти расстояния равны. Моно приравнять их и избавиться от корня: (9+(8-у)в квадрате) = (36 + (5-у)в квадрате) 9 + 64 - 16у + у в квадрате = 36+25-10у + у в квадрате 73-16у = 61 - 10у 12 = 6у у = 2 Эта точка (0; 2) Если речь шла об оси ОХ, то всё считается точно так же, только точка будет иметь координаты (х; 0)
Это свойство называется транзитивностью параллельности прямых.
Доказательство
Пусть прямые a и b одновременно параллельны прямой c. Допустим, что a не параллельна b, тогда прямая a пересекается с прямой b в некоторой точке A, не лежащей на прямой c по условию. Следовательно, мы имеем две прямые a и b, проходящие через точку A, не лежащую на данной прямой c, и одновременно параллельные ей. Это противоречит аксиоме 3.1. Теорема доказана.
аксиома 3.1Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну.