угол BAD равен 120 градусам. Пусть угол CBD равен x. Тогда угол ABD равен 3x. Поскольку сумма углов треугольника равна 180 градусов, получаем: 120 + x + 3x = 180 4x = 120 x = 30 Значит, угол ABD равен 90 градусам. Теперь предположим что большая сторона параллелограмма (AD) равна x. Тогда сторона AB равна (90 - 2x)/2 = 45 - x Как известно, синус угла равен отношению противолежащего катета прямоугольного треугольника к его гипотенузе. Поэтому AB/AD = sin30 Подставляем: (45 - x)/x = sin30 Синус 30 градусов, как известно, равен 1/2: (45 - x)/x = 1/2 90 - 2x = x 3x = 90 x = 30 ответ: большая сторона параллелограмма равна 30 см.
Так как окружность касается оси 0X (дано), то центр окружности находится в точке с координатами О(Xo;R). Уравнение окружности: (X-Xo)²+(Y-R)²=R² или в нашем случае X²-2X*Xo+Xo²+Y²-2R*Y+R²=R² или X²-2X*Xo+Xo²+Y²-2R*Y=0. Обе точки должны удовлетворять этому уравнению или 49-14Xo+Xo+64-16R=36-12Xo+Xo+81-18R. Отсюда Xo=R-2 (координата центра). То есть центр лежит в точке О(R-2;R). Тогда уравнение нашей окружности примет вид: для точки (7;8) (9-R)²+(8-R)²=R² или R²-34R+145=0. Решаем квадратное уравнение и получаем R1=17+√(17²-145) = 17+12=29. R2=17-12=5 Тогда искомое уравнение: (X-3)²+(Y-5)²=25. (первый вариант). (X-27)²+(Y-29)²=841. (второй вариант).
Оба уравнения представляют окружности, пересекающиеся в точках (7;8) и (6;9).
Р=34