М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AlikhanKazbekov
AlikhanKazbekov
08.08.2020 07:45 •  Геометрия

Хорды ав и cd пересекаются в одной точке е так, что ае=3см, ве=36см, се: dе=3; 4. найдите величину хорды cd и наименьшее значение радиуса этой окружности. ответ должен получится такой( cd=21 см, наименьшее значение радиуса данной окружности 19,5 см)

👇
Ответ:
Машка4155
Машка4155
08.08.2020
СЕ/ДЕ=3/4=3х/4х. СЕ=3х, ДЕ=4х, АЕ*ВЕ=СЕ*ДЕ, 3*36=3х*4х, 108=12*х в квадрате, х=3, СЕ=3*3=9, ДЕ=4*3=12, СД=9+12=21
наименьший диаметр окружности=наибольшей хорде АВ=3+36=39, радиус окружности=39/2=19,5
4,5(6 оценок)
Открыть все ответы
Ответ:
Нарисуй чертеж
ВМ=МС=а
AN=ND=b  (это обозничили мы так)
треугольники APN и MPB подобны с коэффициентом  b/a,и высоты тоже

треуг. NQD и CQM подобны с тем же коэфф  b/a  и высоты тоже.
но если у треуг. APN  и  NQD  AN=ND, то и высоты равны. Т.е. точки P и Q находятся на одинаковом расстоянии от AD
что и требовалось доказать.

если по поводу высот , что они равны , непонятка, то это следует из того, что отношения высот малого и большого треуг. равно одному и тому же коэффициенту, а сумма этих высот постоянна (высота трапеции)
4,4(71 оценок)
Ответ:
shipashka
shipashka
08.08.2020
Треугольная пирамида, все боковые ребра равны, => высота пирамиды проектируется в центр описанной около треугольника (основания пирамиды) окружности.
радиус описанной около произвольного  треугольника окружности вычисляется по формуле:
R= \frac{AB}{2sin\ \textless \ C} = \frac{BC}{2sin\ \textless \ A}= \frac{AC}{2sin\ \textless \ B}
AC=1, BC=2, <C=60°. AB=?
по теореме косинусов:
AB²=AC²+BC²-2*AC*Bc*cos<C
AB²=1²+2²-2*1*2*cos60°
AB²=3,  AB=√3

прямоугольный треугольник:
гипотенуза с=√13 - боковое ребро пирамиды
катет а=√3 радиус описанной около треугольника окружности
катет Н -высота пирамиды, найти по теореме Пифагора:
c²=a²+H², H²=(√13)²-(√3)². H=√10
V= \frac{1}{3} * S_{osn} *H&#10;&#10; S_{osn} = \frac{1*2}{2} *sin60 ^{0} = \frac{ \sqrt{3} }{2}
V= \frac{1}{3} * \frac{ \sqrt{3} }{2}* \sqrt{10} = \frac{ \sqrt{30} }{6}
4,8(37 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ