М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DDddd532222
DDddd532222
06.02.2021 15:05 •  Геометрия

Окружность радиуса 5 проходит через вершины а и с треугольника авс, пересекаетсторону ав в ее середине, а сторону вс в точке к такой, что вк=вс/4. найти стороны треугольника авс.

👇
Ответ:
vbbbbb
vbbbbb
06.02.2021
Пусть точка E - середина AB.
Вокруг четырехугольника AEKC можно описать окружность.
Поэтому сумма углов EKC и BAC равна 180°, что означает, что угол EKB = угол BAC, то есть треугольники ABC и BEK подобны (у них все углы равны).
Из этого подобия следует BK/BA = BE/BC, или, если положить
AB = c, AC = b, BC = a, то (a/4)/c = (c/2)/a; a = c√2;
коэффициент подобия треугольников ABC и BEK равен √2/4;
это легко получается из условия.
Далее, пусть угол ABC = β; и еще надо обозначить CE = m; (это медиана треугольника ABC к стороне AB).
Из условия известно, что радиус окружности, описанной вокруг треугольника AEC, равен 5.
Кроме того, известно, что площадь ACE равна половине площади ABC, поскольку CE - медиана.
Как уже было найдено, если AB = c, то AE = c/2; BC = c√2;
откуда
Sabc = BA*BC*sin(β)/2 = (c^2)*√2*sin(β)/2;
Seac = Sabc/2 = (c^2)*√2*sin(β)/4;
По теореме косинусов для треугольника ABC
(AC)^2 = b^2 = c^2 + (c√2)^2 - 2*c*(c√2)*cos(β) = (c^2)*(3 - 2√2*cos(β));
по теореме косинусов для треугольника EBC
(EC)^2 = m^2 = (c/2)^2 + (c√2)^2 - 2*(c/2)*(c√2)*cos(β) = (c^2)*(9/4 - √2*cos(β)); Далее, используя известную формулу (R = abc/4S) для радиуса описанной окружности для треугольника AEC, легко получить
5 = AE*AC*EC/(4*Saec) =
(c/2)*(c√(3 - 2√2*cos(β)))*(c√(9/4 - √2*cos(β))/((c^2)*√2*sin(β));
или
5 = с*(√(3 - 2√2*cos(β)))*(√(9/4 - √2*cos(β))/(2√2*sin(β));
Никаких дополнительных условий в задаче нет, то есть угол ABC = β; может принимать любые значения из области определения полученной функции. 
Кроме того, подобие треугольников ABC и KBE при любом значении β ВСЁ РАВНО означает, что вокруг четырехугольника AEKC можно описать окружность Правда, радиус этой окружности зависит от угла ABC = β. Но из последнего соотношения видно, что этот радиус пропорционален стороне AB = c. Что означает, что из условия задачи И НЕЛЬЗЯ определить, чему равен β. 
Поэтому из этого соотношения следует два вывода
1) условие задачи СКОРЕЕ ВСЕГО не полное, точнее - в задаче есть неопределенный параметр.
2) последнее соотношение фактически и есть решение поставленной задачи, определяющее величину стороны AB = с, и всех остальных сторон, само собой, как функцию неопределенного параметра β.  Напомню, что
BC = с*√2, а AC = c*√(3 - 2√2*cos(β)). 
Частный случай, когда AC является диаметром, решается элементарно по тому же методу. 
В этом случае AEC - прямоугольный треугольник, а ABC - равнобедренный, то есть AC = BC = c√2, а радиус окружности очевидно равен AC/2 = c√2/2 = 5; откуда AB = c = 5√2; BC = AC = 10;
из полученной в задаче формулы этот случай получается, если 2√2*cos(β) = 1; что легко проверить. То есть, когда cos(β) = √2/4; и, соответственно, sin(β) = √14/4;
Другой напрашивающийся частный случай - если угол ABC - прямой. В этом случае cos(β) = 0; sin(β) = 1;
Треугольник получается подобным треугольнику со сторонами (1, √2, √3) при этом меньший катет равен c = 5√6/9; и так далее. 
Отдельный вопрос - про область определения.
Так, например, очевидно, что если cos(β) < 0, то решение есть всегда. То есть для тупых углов ABC решение есть всегда. К счастью, 3/2√2 > 1 и 9/4√2 > 1, поэтому решение существует при любых значениях β между 0 и 180 градусами.
Окружность радиуса 5 проходит через вершины а и с треугольника авс, пересекаетсторону ав в ее середи
4,4(37 оценок)
Открыть все ответы
Ответ:
Leska7
Leska7
06.02.2021
По условию АД перпендикулярна СД, также ОС перпендикулярна СД (касательная к окружности перпендикулярна к радиусу, проведенному в точку касания). Значит АД||ОС (если две прямые перпендикулярны третьей прямой, то они параллельны между собой).
АС является секущей к прямым АД и ОС, значит углы ДАС и АСО равны как внутренние накрест лежащие.
Δ АОС является равнобедренным, т.к. ОА=ОС (радиусы), значит углы при основании ОАС и АСО равны.
Получается , что углы ДАС и ОСА равны, значит АС - биссектриса угла ВАД
4,4(45 оценок)
Ответ:
Alexkusaiko
Alexkusaiko
06.02.2021
Рассмотрим треугольник АОВ. Здесь <OAB=1/2<A. Для этого утверждения мы использовали свойство касательных к окружности: отрезки касательных АВ и АD к окружности, проведенные из одной точки А, равны и составляют равные углы с прямой АО, проходящей через эту точку А и центр окружности О (<OAB=<OAD=1/2<A).
Таким же образом утверждаем, что <ОВА=1/2<В (касательные ВС и ВА проведены к окружности из точки В).
Зная сумму углов треугольника, запишем:
<AOB=180-(<OAB+<OBA)=180-(1/2<A+1/2<B)=180-1/2(<A+<B).
Рассмотрим треугольник COD. Здесь <OCD=1/2<C (касательные CB и CD к окружности проведены из точки С) и <ODC=1/2<D (касательные DC и DA проведены из точки D). Тогда
<COD=180-(<OCD+<ODC)=180-(<1/2<C+1/2<D)=180-1/2(<C+<D).
Зная сумму углов четырехугольника ABCD, запишем:
<A+<B+<C+<D=360,
<A+<B=360-<C-<D.
В выражение <AOB=180-1/2(<A+<B) подставим значение для суммы <A+<B:
<AOB=180-1/2(<A+<B)=180-1/2(360-<C-<D)=1/2(<C+<D). 
Запишем сумму углов АОВ и COD:
<AOB+<COD=1/2(<C+<D) + 180-1/2(<C+<D)=180°, что и требовалось доказать.
Докажите,что если в четырехугольник авсд вписана окружность с центром в точке о,то угол аов+ угол со
4,8(86 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ