М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Super364
Super364
19.08.2021 13:18 •  Геометрия

Даны четыре вектора: а(-2;6;-3), в(4;0;3), с(-4;2;1). Найдите координаты вектора d
=2a+3b-5c.

👇
Открыть все ответы
Ответ:
niknem111
niknem111
19.08.2021

1) Найдем длины сторон 4-хугольника по формуле расстояния между двумя точками:

MN=sqrt((5-2)^2+(3-2)^2)=sqrt(9+1)=sqrt(10);

NK=sqrt((6-5)^2+(6-3)^2)=sqrt(1+9)=sqrt(10);

KP=sqrt((3-6)^2+(5-6)^2)=sqrt(9+1)=sqrt(10);

PM=sqrt((2-3)^2+(2-5)^2)=sqrt(1+9)=sqrt(10).

Итак, в чет-ке MNPK длины сторон равны, значит это либо ромб, либо квадрат (тоже ромб!).

2) Найдем длины диагоналей 4-хугольника по формуле расстояния между двумя точками:

NP=sqrt((3-5)^2+(5-3)^2)=sqrt(4+4)=sqrt(8)=2*sqrt(2);

MK=sqrt((6-2)^2+(6-2)^2)=sqrt(16+16)=sqrt(32)=4*sqrt(2).

Итак, диагонали неравны, значит это ромб, ч.т.д.

3) Площадь ромба равна половине произведения длин его диагоналей:

S=(1/2)*2*sqrt(2)*4*sqrt(2)=4*2=8

 

4,5(56 оценок)
Ответ:
Nikalusha
Nikalusha
19.08.2021

\\\ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ.
Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.


Определение: Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости.


Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми


Прямые АA1 и BD1 скрещивающиеся.

 

Пусть точка О - точка пересечения диагоналей Квадрата ABCD.

 

АA1 перпендикулярна АB

AA1 перпендикулярна AD (следует из определения прямоугольног о параралелипипеда)

поєтому

AA1 перпендикулярна плоскости ABD а значит и любой прямой лежащей в этой плоскости в частности пряммой AO

 

Аналогично доказываем, что прямая BB1 и пряммая АО перпендикулярны

 

Пряммые АО и BD перпендикулярны как диагонали квадрата

 

Итак, ОА перпендикулярна двум пересекающимся прямым BB1 и BD плоскости BDB1, а значит она препендикулрна этой плоскости, а значит и перпендикулярна и любой прямой лежащей в этой плоскости, в частности

 АО перпендикулярна BD1.

 

Пряммая AA1 не лежащая в плосоксти BB1D паралельна двум прямым єтой плоскости (а именно BB1 и DD1 , следует из свойств прямоугольного параллелипипеда), поэтому она параллельна плоскости BB1D(содержащей пряммую BD1)

 

Далее пряммая АО перпендикулярна прямым AA1 и B1D. По определению расстояние от ребра AA1 до диагонали параллелепипеда BD1 это отрезок

АО

 

ABCD - квадрат со стороной равной а, поєтому

его диагональ равна AC=a*корень(2)

AO=1/2AC=1/2*a*корень(2)

ответ: a*корень(2)/2

 

4,8(6 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ