Чтобы узнать, существует ли такой треугольник со сторонам 3; 3; 8 — надо сравнить каждую сторону с суммой друх других сторон: 8+3 = 11.
Каждая сумма двух сторон должна быть больше каждой стороны, чтобы такой треугольник существовал.
Сумма боковый сторон — 3+3 = 6, которая меньше стороны 8, тоесть треугольник со сторонами 3; 3; 8 — не существует.
Теперь представим, что боковые стороны равны 8; 8, а основание — 3.
3+8 = 11 > 3;
8+8 = 16 > 3
8+3 = 11 > 3.
В этом случае, треугольник сущестует, а основание — 3, боковые стороны — 8; 8.
Площадь параллелограмма
S=h*BC
Sтрапеции=h*(ВЕ+АD):2
Высота параллелограмма и трапеции общая.
ВЕ=ВС:2
АD=ВС=2 ВЕ
ВЕ+АD=3ВЕ=3ВС:2
Sтрап=h*(3ВС:2):2
Sтрап=3 SABCD/4=3*92:4=69
Вариант решения 2
Соединим Е и D.
Соединим В с серединой АD.
Соединим В и D.
Получились 4 равновеликих треугольника.
Их высоты равны высоте параллелограмма, основания равны половине ВС и половине АD.
АD=ВС.
Площадь каждого треугольника равна 1/4 площади параллелограмма. Площадь трапеции АВЕD= 3/4 площади параллелограмма.
S трапеции =92:4*3=69