Пусть высота AH(сори,не отметила) тк все стороны ромба равны,а отрезки ,на которые делит высота сторону равна 8 и 2 следовательно AB=BC=CD=DA=10 в треугольнике ABC: он прямоугольный,AB=10 а BH=8 значит по теореме пифагора мы можем найти третью сторону AH и ,не посредственно,высоту нашего ромба AB²=BH²+AH² AB,BH и AH > 0 ! это важно! чуть позже поймешь,почему 10²=8²+AH² AH²=36 AH=6 AH=-6(не удовлетворяет условию AH>0) ответ:6
Если принять AC = BC = 1; то AB = √2; Если симметрично отобразить треугольник вместе с полуокружностью относительно AC, то получится равнобедренный прямоугольный треугольник ABB1 с гипотенузой BB1 = 2 и вписанной в него окружностью. Отсюда диаметр этой окружности PC = AB + AB1 - BB1 = 2√2 - 2; Треугольник PCB - прямоугольный с катетами BC = 1; PC = 2√2 - 2; Если M - точка пересечения PB и полуокружности, то ∠CMP - прямой, поскольку опирается на диаметр, то есть CM - высота в прямоугольном треугольнике PCB; она делит гипотенузу PB в отношении, равном квадрату отношения катетов, то есть PM/MB = (PC/BC)^2 = 4(√2 - 1)^2 = 4(3 - 2√2);
Опишем окружность около треугольника АВС. Диаметр этой окружности лежит вне этого треугольника, так как угол <B - тупой (дано). <MCL=90°, как угол между биссектрисами двух смежных углов (свойство). Значит <CLM=45° (так как CL=CM - дано). Тогда <LAС+<LCA=45° (так как внешний угол ВLC равен сумме двух внутренних, не смежных с ним). Умножим на 2 обе части этого уравнения: 2<LAK+2<LCA=90° или 2<BAC+<BCA=90°. Но <BAC+<BCA=180°-<ABC тогда <BAC+180°-<ABC=90° или <BАC=<ABC-90°. Проведем через точку А диаметр АК описанной окружности. Тогда <АСК=90°, как угол, опирающийся на диаметр. <AКC=180°-<AВC, так как опираются на одну хорду. <KAC=180°-<ACK-<AKC или <KAC=180°-90°-180°+<AВC или <KAC=<AВC-90°. То есть <KAC=<BАC. Это вписанные углы и дуги ВС и КС равны. Отсюда КС=ВС=5, как хорды, стягивающие равные дуги. Тогда по Пифагору AK=√(АС²+СК²) или АК=√(12²+5²)=13. Это диаметр. Значит радиус описанной окружности равен 6,5. ответ: R=6,5.
тк все стороны ромба равны,а отрезки ,на которые делит высота сторону равна 8 и 2 следовательно AB=BC=CD=DA=10
в треугольнике ABC:
он прямоугольный,AB=10 а BH=8 значит по теореме пифагора мы можем найти третью сторону AH и ,не посредственно,высоту нашего ромба
AB²=BH²+AH² AB,BH и AH > 0 ! это важно! чуть позже поймешь,почему
10²=8²+AH²
AH²=36
AH=6 AH=-6(не удовлетворяет условию AH>0)
ответ:6