Какие верны? любые два равносторонних треугольника подобны в любом прямоугольнике диагонали взаимно перпендикулярны все диаметры окружности равны между собой
1. Верно, так как углы любого равностороннего треугольника равны 60 градусов. Значит они подобны по двум углам. 2. Неверно. Диагонали перпендикулярны только в квадрате. 3. Диаметр - это сумма двух радиусов, а они у окружности равны между собой. Значит и диаметры равны.
1) так. Есть форума такая, мало кому известная. Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу. Звучит страшно, но это не так. Рисунок приложу. h=sqrt 2*8= 4 Теперь ищем площадь: S=1/2*h*c=1/2*4*10=20 sqrt-корень с-гипотенуза 2) Тангенс по определению отношение катетов. Там дробь, но она сокращена. По теореме Пифагора. Сумма квадратов катетов равна квадрату гипотенузы. Чтобы получилось 51^2 8 и 15 - мало 16 и 25 - мало 24 и 45 - как раз. 24^2+45^2=51^2 576+2025=2601 ответ: 24 и 45
Трапеция АВСД, АД=10, ВС=5, АС=12, ВД=9 проводим высоту СН на АД Площадь трапеции =1/2*(АД+ВС) * СН Из точки С проводим прямую параллельную ВД до пересечения с продолжением основания АД в точке К. Четырехугольник НВСК - параллелограмм, ВС=ДК=5, ВД=СК=9, АК=АД+ДК=10+5=15, СН - высота треугольника АСК площадь треугольника АСК = 1/2АК*СН, но АК=АД+ДК(ВС) т.е. площадь треугольника АСК=площадь трапеции АВСД, площадь треугольника АСК=корень(р * (р-АС)*(р-СК)*(р-АК)), где р -полупериметр полупериметр треугольника АСК=(12+9+15)/2=18 площадь треугольника АСК=корень(18 *6*9*3)=54 = площадь трапеции АВСД
2. Неверно. Диагонали перпендикулярны только в квадрате.
3. Диаметр - это сумма двух радиусов, а они у окружности равны между собой. Значит и диаметры равны.