Втреугольнике abc точка n лежит на стороне ac, an=2/5ac, медиана am перпендикулярна bn. найти площадь треугольника abc, если am=m, bn=n. объясните решение, .
Пусть K - точка пересечения AM и BN. Для решения задачи достаточно найти BK. 1) Если предположить, что автор знаком с теоремой Чевы, а так же - с теоремой Ван-Обеля, то если продолжить CK до пересечения с AB в точке P, то AP/PB = AN/NC = 2/3; поскольку BM - медиана, BM/MC = 1; то есть BP/PA = 3/2; Отсюда BK/KN = 3/2 + 1 = 5/2; то есть BK = n*5/7; 2) В том случае, если теорема Чевы неизвестна, задача тоже легко решается. Если провести NQ II CB; точка Q лежит на AM, то из подобия треугольников ANQ и ACM следует NQ/CM = 2/5; треугольники QKN и MKB тоже подобны, и MB = CM; отсюда NK/BK = NQ/MB = 2/5; то есть BK = n*5/7; ( а NK = n*2/7, само собой)
Ясно, что площадь ABC равна удвоенной площади AMB, то есть равна S = BK*AM = m*n*5/7;
Смотрим образовавшийся прямоугольный (т.к. медиана в равностороннем треугольнике является и высотой, и биссектрисой) треугольник: Т.к. она является и биссектрисой, то угол поделится пополам, т.е. будет равен = 30. Дальше воспользуемся тригонометрией, а именно косинусом (напомню, косинус - отношение прилежащего катета к гипотенузе): cos 30=√3/2 √3/2=9√3/x √3х=18√3 х=18 (см) - сторона треугольника. Если есть желание, можешь расковырять через теорему Пифагора, обозначив второй катет за х, а гипотенузу за 2х. ответ получится абсолютно тот же.
3 см Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см
1) Если предположить, что автор знаком с теоремой Чевы, а так же - с теоремой Ван-Обеля, то
если продолжить CK до пересечения с AB в точке P, то AP/PB = AN/NC = 2/3; поскольку BM - медиана, BM/MC = 1;
то есть BP/PA = 3/2;
Отсюда BK/KN = 3/2 + 1 = 5/2; то есть BK = n*5/7;
2) В том случае, если теорема Чевы неизвестна, задача тоже легко решается.
Если провести NQ II CB; точка Q лежит на AM, то из подобия треугольников ANQ и ACM следует NQ/CM = 2/5;
треугольники QKN и MKB тоже подобны, и MB = CM; отсюда NK/BK = NQ/MB = 2/5;
то есть BK = n*5/7; ( а NK = n*2/7, само собой)
Ясно, что площадь ABC равна удвоенной площади AMB, то есть равна
S = BK*AM = m*n*5/7;