Не знаю насколько ясно получилось объяснить на картинке, просто скажу, что решение задачи сводиться к тому, что сумма КВАДРАТОВ косинусов в прямоугольном треугольнике равна 1. Равнобедренность треугольника АВС мы используем только для того, чтобы определить равность косинусов угла САВ и АВС. Дальнейшие действия производим, рассматривая треугольник АВН, который прямоугольный. Косинус угла НВА известен, так как он же и угол АВС, то есть 7/25. А косинус угла АНВ равен 0(нулю) так как он 90 градусов. Ну а дальнейшее решение есть на картинке. Надеюсь ясно. Вопросы будут - обращайтесь.
Дано: АВСДА₁В₁С₁Д₁ - (в условии не указано что это) ВД₁ - диагональ АВ=4, ВС= 5√3, АА₁=3 Найти: ∠А₁ВД₁ -?
1) Пусть АВСДА₁В₁С₁Д₁ - прямоугольный параллелепипед, тогда вычислим по формуле ВД₁²=АВ²+ВС²+АА₁²=4²+(5√3)²+3²=100, ВД₁=√100=10 2) Так как АВСДА₁В₁С₁Д₁ прямоугольный параллелепипед, то в Δ А₁В ∠А=90°, тогда находим по теореме Пифагора А₁В²=АА₁²+АВ²=25, А₁В=√25=5 а также ΔА₁Д₁В - прямоугольный,то cos острого угла равен отношению катета, выходящего из этого угла, к гипотенузе; находим cos ∠А₁ВД₁=А₁В/Д₁В=5/10=1/2=60°
В треугольнике СDE угол СDE = 90 градусов, т.к. DE перп. DC по условию, тогда ЕС - гипотенуза. Проведём из точки D к гипотенузе медиану DM, медиана из вершины прямого угла равна половине гипотенузы, тогда DM = EC/2=1. Треугольник DMC - равнобедренный, тогда углы MDC и MCD равны, но СD - биссектриса, значит углы ВСD и DCM также равны, т.е. углы MDC и BCD равны, значит медиана DM параллельна стороне ВС, т.к. равны накрест лежащие углы при секущей DС, тогда углы ADM и АВС равны как соответственные углы при параллельных прямых, тогда треугольники ADM и АВС подобны по 2 углам, значит AD/DM=AB/BC, но АВ=ВС, т.к. исходный треугольник равнобедренный, т.е. AD/DM=1, значит AD=DM=1.