так как сечением у нас является прямоугольный треугольник ABC . где BC-гипотенуза, а AC-катет (радиус) Из этого по теореме Пифагора найдем AC . так как треугольник АВСпрямоугольный,то AC=AB(представим как х) ПОлучится уравнение: х2+х2=144. 2х(в квадрате)=144 .х=корень из 72 то есть 3 корней из 8 . AC=3 корней из 8(радиус)1) Sосн=пr^2= п*(3 корней из 8)^2(в квадрате)=72п.2)Sбок=пrl(где l это гипотенуза BC) = п*3 корней из 8*12=36п корней из 83 Sпол = Sбок+Sосн=36п корней из 8 + 72п осевое сечение конуса всегда равнобедренный треугольник, в котором равные стороны треугольника являются образующими. Катет не может быть радиусом, здесь радиус половина гипотенузы. См. рис. во вложении.ВА^2+AC^2=12^2BA=AC2BA^2=144BA=v72 - это длина образующейРадиус половина гипотенузы то есть 6Высоту АО найдем тоже из прямоуг. треугольника АОСАО=v(72-36)=6Теперь можно найти полную поверхность конусаS=?(R^2+Rl)=?(36+6v72)==?(36+36v2)=36?(1+v2) Sбок=?rlSосн=?r?гипотенуза это диаметр основанияпусть катет =х, тогда по т Пифагорах?+х?=12?2х?=144х?=72х=6v2 образующаярадиус =пполовине диаметра=12 :2=6Sбок=?*6*6v2=36?v2Sосн=?6?=36?Sпол=36?v2+36?=36?(v2+1)
Поставим ножку циркуля в точку А. Радиусом, равным расстоянию АМ, проведём полуокружность. Точки пересечения окружности со сторонами угла обозначим 1 и 2. Соединив их, получим равнобедренный треугольник. Теперь нужно провести параллельно отрезку, соединяющему точки 1 и 2, прямую, проходящую через точку М. Для этого ставим ножку циркуля в точку 1, открываем раствор до точки М. Радиусом 1М проводим из точки 2 полуокружность до пересечения с первой окружностью ( с центром из точки А). Точку пересечения обозначим 3. Через точку М и точку 3 проведем прямую. Она параллельна отрезку, проходящему через точки 1 и 2. Точки пересечения прямой 3М со сторонами угла обозначим В и С. Получен равнобедренный треугольник АВС с основанием ВС, проходящим через заданную точку М.
Для решения данной задачи вспомним свойство равнобедренного треугольника: биссектриса проведенная из вершины угла равнобедренного треугольника к основанию является его высотой и медианой. Таким образом задача сводится к решению двух подзадач. 1. построение биссектрисы угла; 2. построение перпендикуляра к прямой через заданную точку. Решения: 1. раскроем циркуль на удобное расстояние и, поставив ножку на т. А сделаем засечки на лучах угла; не изменяя раствора циркуля, поставив его ножку на сделанные засечки, сделаем еще две до пересечения; полученная т. А1 принадлежит биссектрисе, проводим её. 2. раскроем циркуль на расстояние большее чем расстояние от т. М до биссектрисы и, поставив ножку на т. М сделаем засечки на АА1; не меняя раствор циркуля ставим ножку на засечки и делаем новые засечки с другой стороны АА1; получаем точку М1; прямая ММ1 перпендикулярна АА1 и точки В и С - пересечения с углом А образуют равнобедренный треугольник АВС с основанием ВС которому принадлежит т. М.
х2+х2=144. 2х(в квадрате)=144 .х=корень из 72 то есть 3 корней из 8 . AC=3 корней из 8(радиус)1) Sосн=пr^2= п*(3 корней из 8)^2(в квадрате)=72п.2)Sбок=пrl(где l это гипотенуза BC) = п*3 корней из 8*12=36п корней из 83 Sпол = Sбок+Sосн=36п корней из 8 + 72п осевое сечение конуса всегда равнобедренный треугольник, в котором равные стороны треугольника являются образующими. Катет не может быть радиусом, здесь радиус половина гипотенузы. См. рис. во вложении.ВА^2+AC^2=12^2BA=AC2BA^2=144BA=v72 - это длина образующейРадиус половина гипотенузы то есть 6Высоту АО найдем тоже из прямоуг. треугольника АОСАО=v(72-36)=6Теперь можно найти полную поверхность конусаS=?(R^2+Rl)=?(36+6v72)==?(36+36v2)=36?(1+v2) Sбок=?rlSосн=?r?гипотенуза это диаметр основанияпусть катет =х, тогда по т Пифагорах?+х?=12?2х?=144х?=72х=6v2 образующаярадиус =пполовине диаметра=12 :2=6Sбок=?*6*6v2=36?v2Sосн=?6?=36?Sпол=36?v2+36?=36?(v2+1)