Площадь боковой поверхности равна 400 * √3 / 3 см2.
Объяснение:
Так как в основании призмы ромб, а его диагонали, в точке пересечения делятся пополам и пересекаются под прямым углом, то треугольник АОД прямоугольный, АО = АС / 2 = 16 / 2 = 8 см, ОД = 12 / 2 = 6 см.
Тогда, по теореме Пифагора, АД2 = АО2 + ОД2 = 64 + 36 = 100.
АД = 10 см.
Так как призма прямая, то треугольник АДД1 прямоугольный, тогда tg30 = ДД1 / АД.
ДД1 = АД * tg30 = 10 * (1 /√3) = 10 * √3 / 3.
Так как у ромба длины всех сторон равны, то Sбок = 4 * Sаа1д1д = 4 * 10 * 10 * √3 / 3 = 400 * √3 / 3 см2.
Площадь боковой поверхности равна 400 * √3 / 3 см2.
Объяснение:
Так как в основании призмы ромб, а его диагонали, в точке пересечения делятся пополам и пересекаются под прямым углом, то треугольник АОД прямоугольный, АО = АС / 2 = 16 / 2 = 8 см, ОД = 12 / 2 = 6 см.
Тогда, по теореме Пифагора, АД2 = АО2 + ОД2 = 64 + 36 = 100.
АД = 10 см.
Так как призма прямая, то треугольник АДД1 прямоугольный, тогда tg30 = ДД1 / АД.
ДД1 = АД * tg30 = 10 * (1 /√3) = 10 * √3 / 3.
Так как у ромба длины всех сторон равны, то Sбок = 4 * Sаа1д1д = 4 * 10 * 10 * √3 / 3 = 400 * √3 / 3 см2.
S = 156
х - длина, у -ширина
х+у+х+у =Р
2х +2у = 50
Разделим все на 2.
х + у = 25
Тогда, х * у =156
Выразим х.
х = 25 - у
Подставим в х * у = 156
(25 - у) * у = 156
25у - у² - 156 = 0
-у² + 25у -156 = 0
Д= 25² + 4 *156 = 625 - 624 = 1
у1 = -25 +1 / -2 = 12
у2 = -25 -1 / -2 = -26 / -2 = 13
х1 = 25 - 12 = 13
х2 = 25 - 13 = 12
Длина 13 , ширина 12
ответ 13