Стороны четырехугольника abcd ab bc cd и ad стягивают дуги описанной окружности градусные величины которых равны соответственно 47 112 130 71 найдите угол b этокого четырёщ угольника дай те ответ в градусах
Обозначим четырёхугольник АВСД, центр окружности О. У вписанного четырёхугольника сумма противоположных углов равна 180 градусов. Значит, противоположные углы - это А; С (120°; 60°) и В; Д ( 150°; 30°). Проведём радиусы в вершины. Так как по условию ВС = АВ, то ОВ делит угол в 150° на 2 по 75°. Треугольники ОСВ и ОВА равнобедренные, угол ВАО тоже 75°. Тогда угол ОАД равен 120°-75 = 45°. Угол АОД равен 180°-45°-30° = 105°. Дуга АВС, на которую опирается вписанный угол Д, равна 30*2 = 60°. Так как она делится пополам, то получаем ответ: Дуги равны: АВ = ВС = 30°, АД = 105°, ДОС = 360°-2*30°-105° = 195°.
Пусть d, e и f - точки касания вписанной окружности со сторонами треугольника авс: ас, ав и вс соответственно.нам дано: ав=30см, вf=14см, fc=12см.заметим, что ве=вf=14см, dc=fc=12см, а ае=аd как касательные, проведенные из одной точки к окружности.тогда ае=ав-ве=30-14=16см, значит аd=16см. dc=fc=12см. значит ас=ad+dc=16+12=28см. полупериметр треугольника равен: р=(30+26+28): 2=42см.есть формула для вписанной в треугольник окружности: r=√[(p-a)(p-b)(p-c)/р], где р - полупериметр, а, b, c - стороны треугольника. в нашем случае: r=√(12*16*14/42)=√64=8см.ответ: r=8см.
вписанный угол равен половине дуги на которую он опирается, т.о.
он равен 201/2=100,5 градуса