Боковое ребро правильной четырехугольной пирамиды образует с плоскостью основания угол β отрезок соединяющий середину высоты пирамиды и середину бокового ребра равна в. найдите объем пирамиды
По определению tgβ=OS/OC=h/OC OC=h/tgβ В основании правильной четырехугольной пирамиды квадрат. Значит, треугольник OCK прямоугольный равнобедренный. По т.Пифагора OC²=(a/2)²+(a/2)²=a²/4+a²/4=a²/2 OC=a/√2 Треугольник OFK прямоугольный. По т.Пифагора Тогда Формула объема правильной четырехугольной пирамиды
Такс. Сначала мы построили отрезок (единичный) а и угол, равный 90°. Затем применили теорему Пифагора, чтобы найти стороны данного прямоугольного треугольника.
Потом мы построили прямоугольный треугольник с катета ми а и а, чтобы найти и отметить длину гипотенузы, равной а√2. Затем на другой прямой мы отмерили и построили отрезок, равный 4√2а.
Затем на третьей прямой мы отмпиилм отрезок, равный 4√2a. Затем построили прямой угол и вверх отмерили 7 отрезков а. Получился отрезок, равный 7а. Затем соединили конец этого отрезка с концом отрезка, равного 4√2а (это отрезок A3B3). Таким образом мы получили прямоугольный треугольник, у которого один катет равен 7а, а другой - 9а. Синус угла, противолежащего этому катета, равному 7а, есть 7а/9а = 7/9.
Такс. Сначала мы построили отрезок (единичный) а и угол, равный 90°. Затем применили теорему Пифагора, чтобы найти стороны данного прямоугольного треугольника.
Потом мы построили прямоугольный треугольник с катета ми а и а, чтобы найти и отметить длину гипотенузы, равной а√2. Затем на другой прямой мы отмерили и построили отрезок, равный 4√2а.
Затем на третьей прямой мы отмпиилм отрезок, равный 4√2a. Затем построили прямой угол и вверх отмерили 7 отрезков а. Получился отрезок, равный 7а. Затем соединили конец этого отрезка с концом отрезка, равного 4√2а (это отрезок A3B3). Таким образом мы получили прямоугольный треугольник, у которого один катет равен 7а, а другой - 9а. Синус угла, противолежащего этому катета, равному 7а, есть 7а/9а = 7/9.
tgβ=OS/OC=h/OC
OC=h/tgβ
В основании правильной четырехугольной пирамиды квадрат. Значит, треугольник OCK прямоугольный равнобедренный. По т.Пифагора
OC²=(a/2)²+(a/2)²=a²/4+a²/4=a²/2
OC=a/√2
Треугольник OFK прямоугольный. По т.Пифагора
Тогда
Формула объема правильной четырехугольной пирамиды