Вправильной треугольной пирамиде сторона основания равна 10см, а боковые ребра наклонены к плоскости основания под углом 30градусов. найти объем пирамиды?
Есть пирамида АВСО, где О - вершина, АВС - основание. Из вершины С проведем высоту СС1 к стороне АВ. СС1^2=AC^2-AC1^2=10^2-5^2=75, СС1=v75=5v3 S(основания)=1/2*АВ*СС1=1/2*10*(5v3)^2 = 25v3 Из вершины А проведем высоту АА1 к стороне ВС. Точку пересечения высот АА1 и СС1 назовем Д. Т.к. медианы пересекаются в точке, которая делит их в отношении 2:1 считая от вершины, то СД=СС1*2/3=10/v3 Из треугольника ОСД: примем ОД за х. Тогда ОС=2ОД=2х, тогда CД^2=ОС^2-OД^2= 3х^2=(10/v3)^2=100/3 Отсюда х=10/3=ОД V=1/3* S(основания)*h=1/3*25v3*10/3=125/(3*v3)
Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.