Окружность, центр которой расположен в первой координатной четверти, касается оси Ox в точке M, пересекает две гиперболы y = и y =
(k1, k2 > 0) в точках A и B таких, что прямая AB проходит через начало координат O. Известно, что k1 * k2 = 144. Найдите наименьшую возможную длину отрезка OM.В ответ запишите квадрат длины ОМ.
Объяснение:
Прямая АВ , проходящая через начало координат имеет вид у=кх
Найдем точки пересечения этой прямой и гипербол:
y = и у=кх →
= кх , х²=
; x =
( т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к*
.
y = и у=кх →
= кх , х²=
; x =
( т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к*
.
По свойство касательной и секущей проведенных из одной точки ОМ²=ОА*ОВ. Найдем ОА и ОВ по формулам расстояния между точками : ОА= =
,
ОB= =
.
Тогда ОМ²= *
=
. Т.к
≥2 ,по следствию из неравенства о среднем арифметическом и среднем геометрическом , то принимает наименьшее значение равное 2 , а к1*к2=144, то ОМ²=2*√144=2*12=24.
===========================================
Свойство касательной и секущей проведенных из одной точки : "Если из точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью."
Формула расстояния между точками d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.
б 2 сторона прямоугольника
Система уравнений:
1) а+б=5 1)a=5 -b 1)a=5-b
2)a^2+b^2=13 2)25-10b+b^2+b^2=13 2)2b^2-10b+12=0
1)a=5-b 1)a1=3
2) b1=2 a2=2 Значит 1 сторона равняется 2,2 сторона равняется 3.
b2= 3 2)b1=2
b2= 3
S=ab=2*3=6
ответ:6